神经网络为什么要归一化 1.数值问题。 无容置疑,归一化的确可以避免一些不必要的数值问题。输入变量的数量级未致于会引起数值问题吧,但其实要引起也并不是那么困难。因为tansig的非线性区间大约在[-1.7,1.7]。意味着要使神经元有效,tansig( w1*x1 ...
转自:http: blog.csdn.net jeryjeryjery article details 这两天用Python来实现手写数字识别,刚开始用原始数据进行训练,结果预测结果都是同一个类别,全部是对应数字 。正确率也只有 左右,下面是代码及运行结果截图: 预测结果都是数字 。 数据归一化是指将特征值从一个大范围映射到 , 或者 , ,如果原始值都是正数,则建议选择映射到 , 如果原始值有正 ...
2017-11-22 19:39 1 3253 推荐指数:
神经网络为什么要归一化 1.数值问题。 无容置疑,归一化的确可以避免一些不必要的数值问题。输入变量的数量级未致于会引起数值问题吧,但其实要引起也并不是那么困难。因为tansig的非线性区间大约在[-1.7,1.7]。意味着要使神经元有效,tansig( w1*x1 ...
原文:http://blog.sina.com.cn/s/blog_57a1cae80101bit5.html 举例说明 svmtrain -s 0 -?c 1000 -t 1 -g 1 ...
源码和运行结果 cuda:https://github.com/zhxfl/CUDA-CNN C语言版本参考自:http://eric-yuan.me/ 针对著名手写数字识别的库mnist,准确率是99.7%,在几分钟内,CNN的训练就可以达到99.60%左右的准确率。 参数配置 ...
在训练过程中,有时候会遇到训练准确率一直在0.63左右的问题。可能出现在训练了好几个epoch之后,可能一开始就出现并且一直上下浮动。这个时候 解决的途径有以下几点:1、确保数据集没问题。2、调整学习率或者其他参数。3、更换优化器。4、更改初始化方法。5、调整网络结构。 ...
对手写数据集50000张图片实现阿拉伯数字0~9识别,并且对结果进行分析准确率, 手写数字数据集下载:http://yann.lecun.com/exdb/mnist/ 首先,利用图片本身的属性,图片的灰度平均值进行识别分类,我运行出来的准确率是22%左右 利用图片的灰度平均值来进行分类实现 ...
关于神经网络归一化方法的整理由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:(by james)1、线性函数转换,表达式如下:y=(x-MinValue)/(MaxValue-MinValue)说明:x、y分别为转换前、后的值 ...
1 参数初始化 神经网络的参数学习是一个非凸优化问题,在使用梯度下降法进行网络参数优化时,参数初始值的选取十分关键,关系到网络的优化效率(梯度消失和梯度爆炸问题)和泛化能力(局部最优解问题)。参数初始化的方式通常有以下三种: 预训练初始化:不同的参数初始值会收敛到不同的局部最优解 ...
一、例子 二、整体代码 ...