注:本文出自Bin的专栏blog.csdn.NET/xbinworld。 Encoder-Decoder(编码-解码)是深度学习中非常常见的一个模型框架,比如无监督算法的auto-encoding就是用编码-解码的结构设计并训练的;比如这两年比较热的image caption的应用 ...
decode.py 关于embedding接口: 测试如下: ...
2017-11-21 17:13 2 4474 推荐指数:
注:本文出自Bin的专栏blog.csdn.NET/xbinworld。 Encoder-Decoder(编码-解码)是深度学习中非常常见的一个模型框架,比如无监督算法的auto-encoding就是用编码-解码的结构设计并训练的;比如这两年比较热的image caption的应用 ...
from : https://caicai.science/2018/10/06/attention%E6%80%BB%E8%A7%88/ 一、Seq2Seq 模型 1. 简介 Sequence-to-sequence (seq2seq) 模型,顾名思义,其输入是一个序列,输出也是一个序列 ...
0. 目录 1. 前言 2. Transformer模型结构 2.1 Transformer的编码器解码器 2.2 输入层 2.3 位置向量 2.4 Attention模型 3. 总结 ...
1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原理解析 6. 从Encoder-Decoder(Seq2Seq)理解Attention ...
基于循环网络实现编解码结构,代码参考了Jason Brownlee博士博客,看上去博士也是参考官方文档的内容。 1. 本人进行了一些注释。 2. 该架构并不是循环网络特有。 3. 序列的多部预测遵循循环导出的原则。 4.其中的隐状态和细胞状态确实依赖于LSTM这个特定模型 ...
深度特征融合---高低层(多尺度)特征融合 U-Net中的skip connection 在很多工作中,融合不同尺度的特征是提高分割性能的一个重要手段。低层特征分辨率更高(low-level information),包含更多位置、细节信息,但是由于经过的卷积更少,其语义性更低 ...
摘要:在本文中,我们展示了CLAS,一个全神经网络组成,端到端的上下文ASR模型,通过映射所有的上下文短语,来融合上下文信息。在实验评估中,我们发现提出的CLAS模型超过了标准的shallow fusion偏置方法。 本文分享自华为云社区《语境偏移如何解决?专有领域端到端ASR之路 ...
语义分割--(DeepLabv3+)Encoder-Decoder with Atrous Separable Convolution for Semantic .. https://blog.csdn.net/u011974639 ...