散度定理,又称为高斯散度定理、高斯公式、高斯-奥斯特罗格拉德斯基公式或高-奥公式,是指在向量分析中,一个把向量场通过曲面的流动(即通量)与曲面内部的向量场的表现联系起来的定理。它经常应用于矢量分析中。矢量场的散度在体积D上的体积分等于矢量场在限定该体积的闭合曲面s上的面积分。 散度定理 ...
求解被积函数是部分分式P x Q x 的积分,P x 和Q x 是关于x多项式。如果不能求出这类积分的原函数,结果将令人沮丧,现在我们要试图寻找一个有效的方法求解这类问题。 选定系数法 这个很容易: 但是如果将其写成:看起来就不那么容易求解了。这就要求我们能够去掉部分分式的伪装,也就是展开部分分式,变成我们熟悉的被积函数。 首先对被积函数的分母进行因式分解,利用初中的十字相乘法: 再将其拆分为新 ...
2017-11-21 22:25 0 2154 推荐指数:
散度定理,又称为高斯散度定理、高斯公式、高斯-奥斯特罗格拉德斯基公式或高-奥公式,是指在向量分析中,一个把向量场通过曲面的流动(即通量)与曲面内部的向量场的表现联系起来的定理。它经常应用于矢量分析中。矢量场的散度在体积D上的体积分等于矢量场在限定该体积的闭合曲面s上的面积分。 散度定理 ...
部分分式展开 部分分式展开的步骤主要为: 判断有理分式是否为假分式,若是则将其化为真分式。 有理分式 \[\def\MY#1#2{ #1_{#2} x^{#2}} F(x) = \frac{N(x)}{D(x)}= \frac{ \MY{b}{m} + \MY ...
定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!一个函数,可以存在不定积分 ...
不是所有被积函数都能解析地写出原函数。对于那些可能写出来的函数,也需要一定的积分技巧才能随心所欲,分部积分正是其中很重要的一种技巧。 基本公式 部分积分演变自积分的乘法法则: 示例1 看起来很难对付,现在尝试用部分积分解决。 令u = lnx,u’ = (lnx ...
微积分第一基本定理 如果F’(x) = f(x),那么: 如果将F用不定积分表示,F =∫f(x)dx,微积分第一基本定理可以看作为是两个不定积分赋予特定的值,再用符号连接起来,计算具体的数值。 这里引入一个新符号: 于是: 示例1 示例 ...
微积分第二基本定理 这里需要注意t与x的关系,它的意思是一个函数能够找到相应的积分方式去表达。如果F’=f,则: 下面是第二基本定理的证明。 证明需要采用画图法,如上图所示,曲线是y=f(x),两个阴影部分的面积分别是G(x)和ΔG(x),其中: 当Δx足够 ...
我们已经学习了有限区间上的积分,但对于无穷的情况和区间上有奇点的情况仍无法理解。这就需要无穷积分和瑕积分来处理了,它们看起来十分有趣。 增长和衰减速率 通过上一章的内容,我们已经可以做出一些总结,在洛必达法则中,如果f(x) << g(x)且f,g > 0,那么当x ...
在流体运动中,通量是单位时间内流经某单位面积的某属性量,是表示某属性量输送强度的物理量。在大气科学中,包含动量通量、热通量、物质通量和水通量。 本章关于向量和点积的相关知识课参考《线性代数笔记3——向量2(点积)》。 通量 通量实际上是一种线积分。如果有一条平面曲线C和这个平面 ...