一、概念 1、为什么需要数据增强 1)数据是机器学习的原材料,而大部分机器学习任务都是有监督任务,所以非常依赖训练数据,而训练数据就是一种有标注数据,比如做文本分类的任务,就需要一些标注好的文本数据,算法起到一个拟合有标注的数据的作用,从数据中找到一定规律,比如某个数据属于某一类是由于某种特征 ...
摘要: .数据增强是什么 .为什么要数据增强 .常见的数据增强举例 内容: .数据增强是什么 数据增强,是指对 有限 训练数据通过某种变换操作,从而生成新数据的过程。 .为什么要数据增强 首先要说明一些机器学习中的过拟合和经验误差与泛化误差的概念。 举一个打靶子的例子: 右上角的图,每一镖都比较接近靶心,但是却很分散,我们把机器学习中的这种预测结果和实际结果很接近,但预测的结果很分散的情况叫做高方 ...
2017-11-20 17:10 0 2682 推荐指数:
一、概念 1、为什么需要数据增强 1)数据是机器学习的原材料,而大部分机器学习任务都是有监督任务,所以非常依赖训练数据,而训练数据就是一种有标注数据,比如做文本分类的任务,就需要一些标注好的文本数据,算法起到一个拟合有标注的数据的作用,从数据中找到一定规律,比如某个数据属于某一类是由于某种特征 ...
数据增强的方式有很多,比如对图像进行几何变换(如翻转、旋转、变形、缩放等)、颜色变换(包括噪声、模糊、颜色变换、檫除、填充等),将有限的数据,进行充分的利用。这里将介绍的仅仅是对图像数据进行任意方向的移动操作(上下左右)来扩充数据。 这里将使用scipy中的shift变换工具(from ...
图像增广 在5.6节(深度卷积神经网络)里我们提到过,大规模数据集是成功应用深度神经网络的前提。图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而扩大训练数据集的规模。图像增广的另一种解释是,随机改变训练样本可以降低模型 ...
1 什么是数据增强? 来自 <https://www.infoq.cn/article/kyXx3sRKNsdFgqapv2Gw?utm_source=rss&utm_medium=article> 数据增强也叫数据扩增,意思是在不实质性的增加数据的情况下,让有限的数据产生 ...
前面在Unet中提到过通过数据增强可以高效的利用网络。在Unet的代码里找到了有关数据增强的代码,这里贴出来。 下面个的为ImgToh5py.py 作用将相对应的图片数据集转为hdf5格式文件。 下面为DR.py 数据增强的主代码 下面 ...
CutMix CutMix是在论文《CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features》被提出的数据增强方式,常用于分类任务和检测任务 ...
1.简介: 大型深度神经网络是非常强大的,但其损耗巨大的内存以及对对抗样本的敏感性一直不太理想。作者提出的mixup是一个简单地减缓两种问题的方案。本质上,mixup在成对样本及其标签的凸组合(convex combinations)上训练神经网络。这样做,mixup规范神经网络增强 ...
比如,你遇到的一个任务,目前只有小几百的数据,然而目前流行的最先进的神经网络都是成千上万的图片数据,可以通过数据增强来实现。 常用的数据增强手段: Flip(翻转) Rotation(旋转) Scale(缩放) Random Move&Crop(移位&裁剪 ...