一、基础 最初由Rosten和Drummond [Rosten06]提出的FAST(加速段测试的特征)特征检测算法是基于将点P与其包围圆内的点集的直接比较的思想。 基本思想是,如果附近的几个点与P类似,那么P将成为一个很好的关键点。点P是FAST算法的关键点候选者。 影响P分类的点的圈 ...
.FAST featuresfrom accelerated segment test 算法 http: blog.csdn.net yang xian article details 特征点检测和匹配是计算机视觉中一个很有用的技术。在物体检测,视觉跟踪,三维常年关键等领域都有很广泛的应用。很多传统的算法都很耗时,而且特征点检测算法只是很多复杂图像处理里中的第一步,得不偿失。FAST特征点检测是 ...
2017-11-17 22:28 0 5933 推荐指数:
一、基础 最初由Rosten和Drummond [Rosten06]提出的FAST(加速段测试的特征)特征检测算法是基于将点P与其包围圆内的点集的直接比较的思想。 基本思想是,如果附近的几个点与P类似,那么P将成为一个很好的关键点。点P是FAST算法的关键点候选者。 影响P分类的点的圈 ...
FAST,2006年提出并在2010年稍作修改后发表,若某像素与其周围邻域内足够多的像素点相差较大,则该像素可能是角点。 【函数】 Ptr<FastFeatureDetector> create( int threshold=10,bool nonmaxSuppression ...
没日没夜的改论文生活终于要告一段落了,比起改论文,学OpenCV就是一件幸福的事情。OpenCV的发展越来越完善了,已经可以直接使用BOW函数来进行对象分类了。 简单的通过特征点分类的方法 ...
from: http://www.xuebuyuan.com/582331.html 简单的通过特征点分类的方法: 一、train 1.提取 ...
参考博客:https://www.cnblogs.com/ironstark/p/5051533.html 关键点检测本质上来说,并不是一个独立的部分,它往往和特征描述联系在一起,再将特征描述和识别、寻物联系在一起。NARF 算法可以分成两个部分,第一个部分是关键点提取,第二个部分是关键点 ...
一、 SIFT算法 1、算法简介 尺度不变特征转换即SIFT (Scale-invariant feature transform)是一种计算机视觉的算法。它用来侦测与描述影像中的局部性特征, 它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David ...
一、简介 二、OpenCV中的SIFT算法接口 ...
一、简介 二、opencv中的SURF算法接口 三、特征点匹配方法 四、代码 1.特征点提取 2.暴力匹配(尽量避免使用“nth_element前多少个”筛选) 因为surf检测到的角点比较少,所以不适合做小目标匹配。 同样 ...