文章转自: https://www.cnblogs.com/bigmonkey/p/9555710.html https://blog.csdn.net/xx_123_1_rj/article/details/39553809 什么是LU分解 在线性代数中, LU分解是矩阵分解的一种 ...
最近在网上找了下,没有找到我想要的C语言版本,找到的也是错误的。故自己写了一个,并进行了相关测试,贴出来分享。 具体的LU分解算法就不细说了,随便找本书就知道了,关键是分解的处理流程,细节特别容易出错,一切都在代码里面。 include lt stdio.h gt include lt memory.h gt include lt stdlib.h gt define N define DEBUG ...
2017-11-15 20:11 2 3930 推荐指数:
文章转自: https://www.cnblogs.com/bigmonkey/p/9555710.html https://blog.csdn.net/xx_123_1_rj/article/details/39553809 什么是LU分解 在线性代数中, LU分解是矩阵分解的一种 ...
一:矩阵LU分解 矩阵的LU分解目的是将一个非奇异矩阵\(A\)分解成\(A=LU\)的形式,其中\(L\)是一个主对角线为\(1\)的下三角矩阵;\(U\)是一个上三角矩阵。 比如\(A= \begin{bmatrix} 1 & 2 & 4 \\ 3 & 7 & ...
...
又是一次数值科学与计算方法的实验题目,LU分解的推导就不赘述,其核心公式如下: $u_{1i}=a_{1i} (i=1,2,3,\cdots ,n) $ $l_{i1}=a_{i1}/u_{11} ( i=2,3,\cdots ,n)$ $u_{ri}=a_{ri}-\sum_{k ...
在前面的博客中我提到了如何实现正定矩阵的Cholesky分解,并提供了源代码,通过该代码可以将一个正定矩阵分解为一个上三角矩阵和其转置的乘积,在此基础上,对上三角矩阵进行求逆是十分简单的运算,在得到其逆矩阵之后,也就能求出原正定矩阵的逆矩阵了。 数学原理如下: 对于u的逆矩阵,可以使 ...
本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码。 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程。对于一个含有N个变量的N个线性方程组,总可以用高斯消去法,把左边的系数矩阵分解为一个单位下三角矩阵和一个上三角矩阵相乘 ...
n=4;%确定需要LU分解的矩阵维数 %A=zeros(n,n); L=eye(n,n);P=eye(n,n);U=zeros(n,n);%初始化矩阵 tempU=zeros(1,n);tempP=zeros(1,n);%初始化中间变量矩阵 A=[1 2 -3 4;4 8 12 ...
LU分解 乘积的逆 乘积\(AB\)的逆为\(B^{-1}A^{-1}\) \((AB) \cdot (B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1}=I\) 乘积的转置 乘积\(AB\)的转置为\(B^TA^T\)。对于任何可逆的矩阵,有\(A^T ...