原文:EM 算法求解高斯混合模型python实现

注:本文是对 统计学习方法 EM算法的一个简单总结。 . 什么是EM算法 引用书上的话: 概率模型有时既含有观测变量,又含有隐变量或者潜在变量。如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用这些方法了。EM算法就是含有隐变量的概率模型参数的极大似然估计法,或者极大似然后验概率估计法。 . EM 算法的一个小例子: ...

2017-11-13 10:52 4 7557 推荐指数:

查看详情

高斯混合模型GMM与EM算法Python实现

GMM与EM算法Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计。 1. 高斯混合模型(Gaussian Mixture models, GMM) 高斯混合模型(Gaussian Mixture Model ...

Sat Jun 08 01:09:00 CST 2019 0 664
高斯混合模型EM算法

对于高斯混合模型是干什么的呢?它解决什么样的问题呢?它常用在非监督学习中,意思就是我们的训练样本集合只有数据,没有标签。 它用来解决这样的问题:我们有一堆的训练样本,这些样本可以一共分为K类,用z(i)表示。,但是具体样本属于哪类我们并不知道,现在我们需要建立一个模型来描述这个训练样本的分布 ...

Mon Dec 05 07:06:00 CST 2016 0 1357
4. EM算法-高斯混合模型GMM详细代码实现

1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM的前3篇博文分别从数学基础、EM通用算法原理、EM高斯混合模型的角度介绍了EM算法 ...

Wed Jan 16 07:37:00 CST 2019 0 3727
EM算法高斯混合模型參数预计——Python实现

EM算法一般表述: 当有部分数据缺失或者无法观察到时,EM算法提供了一个高效的迭代程序用来计算这些数据的最大似然预计。在每一步迭代分为两个步骤:期望(Expectation)步骤和最大化(Maximization)步骤。因此称为EM算法 ...

Wed Apr 19 17:43:00 CST 2017 0 3255
EM算法高斯混合模型參数预计——Python实现

EM算法一般表述: 当有部分数据缺失或者无法观察到时,EM算法提供了一个高效的迭代程序用来计算这些数据的最大似然预计。在每一步迭代分为两个步骤:期望(Expectation)步骤和最大化(Maximization)步骤,因此称为EM算法 ...

Wed Apr 19 17:43:00 CST 2017 0 3714
聚类之高斯混合模型EM算法

一、高斯混合模型概述 1、公式 高斯混合模型是指具有如下形式的概率分布模型: 其中,αk≥0,且∑αk=1,是每一个高斯分布的权重。Ø(y|θk)是第k个高斯分布的概率密度,被称为第k个分模型,参数为θk=(μk, αk2),概率密度的表达式为: 高斯混合模型就是K个高斯 ...

Sun May 12 22:16:00 CST 2019 0 3359
3. EM算法-高斯混合模型GMM

1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GMM(Gaussian mixture model) 混合高斯模型在机器学习、计算机视觉 ...

Sun Dec 16 06:15:00 CST 2018 0 2972
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM