Cantor集 对[0,1]区间三等分, 去掉中间一个开区间, 然后对留下的两个闭区间继续三等分,去掉中间的开区间, 不断做下去, 最后留下来的点集称为Cantor三分集, 记为\(C\). 它的性质 (1) 分割点一定在Cantor集中, (2) \(C\)的"长度"为0,去掉的区间长度 ...
一直以来,我们总是在孜孜不倦地寻找素数的规律,但是,很难成功,我们可以把素数看作人类思想无法渗透的秘密.公元前 世纪,古希腊哲学家Eratosthenes提出了一个叫 过筛 的方法,做出了世界上第一张素数表,即按照素数的大小排列成表,把自然数按其大小一一写上去,然后,按照下列法则把合数去掉:把 去除,首先把 留下,然后,把 的倍数去除把 留下,然后,把 的倍数去除把 留下,然后,把 的倍数去除同理 ...
2017-11-07 16:15 0 2061 推荐指数:
Cantor集 对[0,1]区间三等分, 去掉中间一个开区间, 然后对留下的两个闭区间继续三等分,去掉中间的开区间, 不断做下去, 最后留下来的点集称为Cantor三分集, 记为\(C\). 它的性质 (1) 分割点一定在Cantor集中, (2) \(C\)的"长度"为0,去掉的区间长度 ...
最近和同学讨论了一下关于延拓定理的一系列事情,个人认为这属于数学分析的盲点,为了补足这一缺憾,在这里作一点笔记。熟知如下定理 引理(Urysohn, 一般版本). 对于正规空间(=T2+T4)$X$, 令$A,B$是$X$的两个分离的闭集, 则他们可以被连续函数分离, 具体来说, 存在 ...
了解以下素数定理以及证明 一.质因数分解定理 反证法:假设存在大于1的自然数不能写成质数的乘积,把最小的那个称为n。 自然数可以根据其可除性(是否能表示成两个不是自身的自然数的乘积)分成3类:质数、合数和1。 首先,按照定义,n 大于1。其次,n 不是质数,因为质\数p可以写成质数乘积:p ...
素数就是没有真因子的正整数,比如2,3,5,7等等。大家学编程之初,免不了要设计一个方法求一个数是否是素数,或者输出小于定于给定参数的全部素数。素数定理呢就是描述这第二个问题的:素数是如何分布的,或者说给定一个比较大的数,有多少个比它小的素数。 研究素数一直是数论学家的最大兴趣,比如高低闻名 ...
现在,我们通过几种不同的方法来阐述下欧拉公式的证明思想,即证明,e^πi + 1=0.首先指数函数是定义在实数域上的,现在要延拓到复数域上,首先要定义e^i, e^ix是什么,严格地说,这是一种定义,而且,这个定义是合理的.e^ix=cosx+isinx,e是自然对数的底,i是虚数单位 ...
素数 素数:一个整数大于1除了1和它自己,没有其他约数即为素数 数学语言:\(\forall n \in Z^+ 且 n>=2 同时只存在1|n,n|n\) 与之相反,合数的定义即为除了1和它自己还有约数 小知识:素数只有2和素奇数 素数筛法 穷举法 及枚举\((1,n)\)的所有 ...
一 写在前面 1.1 本文内容 一个关于素数的性质。 二 素数性质 性质:所有大于等于5的素数一定和6的倍数相邻!此性质可以被证明,证明方法可以去搜索相关资料。下面给出1000以内的素数,你可以验证一下看是不是这样。 有了这个性质,下面再给出一个其在质因数分解中的实际应用 ...