使用R语言做多分类逻辑回归。 任务是 有250个样本,给定三个特征,已经人为分类完成共5组,建立模型来给新数据分类, 先是使用了多元线性回归,三个自变量都比较显著,R2也有90多,实际测了下分类效果还可以。 注意:使用多元线性回归的四个前提条件: 线性、独立、正态、齐性。(1)自变量 ...
结果: features label indexedLabel indexedFeatures rawPrediction probability prediction predictionLabel . , . , . , . soyo . . , . , . , . . ... . ... . soyo . , . , . , . soyo . . , . , . , . . ... . . ...
2017-11-05 15:58 1 1514 推荐指数:
使用R语言做多分类逻辑回归。 任务是 有250个样本,给定三个特征,已经人为分类完成共5组,建立模型来给新数据分类, 先是使用了多元线性回归,三个自变量都比较显著,R2也有90多,实际测了下分类效果还可以。 注意:使用多元线性回归的四个前提条件: 线性、独立、正态、齐性。(1)自变量 ...
1、逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决。 2、决策边界是指不同分类结果之间的边界线(或者边界实体),它具体的表现形式一定程度上说明了算法训练模型的过拟合程度,我们可以通过决策 ...
一、基础 逻辑回归中的决策边界,本质上相当于在特征平面中找一条直线,用这条直线分割所有的样本对应的分类; 逻辑回归只可以解决二分类问题(包含线性和非线性问题),因此其决策边界只可以将特征平面分为两部分; 问题:使用直线分类太过简单,因为有很多情况样本的分类的决策边界 ...
在逻辑回归中使用多项式特征以及在sklearn中使用逻辑回归并添加多项式 在逻辑回归中使用多项式特征 在上面提到的直线划分中,很明显有个问题,当样本并没有很好地遵循直线划分(非线性分布)的时候,其预测的结果是不太准的,所以可以引用多项式项,从线性回归转换成多项式回归,同理,为逻辑回归添加多项式 ...
多项式逻辑回归就是在逻辑回归的基础上将高次项作为特征加进去,以实现高维特征的提取 一、模型构建 多项式逻辑回归模型是由三个子模型组成: (1)添加多项式特征 (2)标准化 (3)逻辑回归 添加多项式特征 将各个特征之间相乘得到新的特征,比如原来的特征是\([x_0,x_1 ...
https://blog.csdn.net/qq_31852975/article/details/72354578 多项式拟合与线性回归 多项式拟合 设M次多项式为 fM(x,w)=w0+w1+w2x2+...+wMxM=∑j=0Mwjxj">fM(x,w ...
含有x和y这两个变量的线性回归是所有回归分析中最常见的一种;而且,在描述它们关系的时候,也是最有效、最容易假设的一种模型。然而,有些时候,它的实际情况下某些潜在的关系是非常复杂的,不是二元分析所能解决的,而这时,我们需要多项式回归分析来找到这种隐藏的关系。 让我们看一下经济学里的一个例子:假设 ...
...