在之前的文章里面,我们介绍了Cook-Torrance BRDF,这是一种常见的用于表现PBR的光照模型。今天我们想要解决的问题是,在该BRDF下,给定物体材质的粗糙度(roughness),该如何生成符合该粗糙度的采样方向呢(这对于路径追踪采样生成入射光、IBL算法中采样计算radiance都很重要 ...
. Monte Carlo 积分 蒙特卡洛方法的思想很简单,就是用随机投点法来模拟不规则图形的面积。比如在 的矩形中,有一个不规则的图形,我们想要直接计算该图形的面积很困难,那怎么办呢 我们可以拿N个点,随机抛在 的矩形框中,数一下落入该不规则图形中的点的个数count,那么该不规则图形的面积就可以用count N近似。 除了求面积,蒙特卡洛方法还有什么应用呢 求积分。 有函数f x ,它在区间 ...
2017-11-04 22:16 0 2316 推荐指数:
在之前的文章里面,我们介绍了Cook-Torrance BRDF,这是一种常见的用于表现PBR的光照模型。今天我们想要解决的问题是,在该BRDF下,给定物体材质的粗糙度(roughness),该如何生成符合该粗糙度的采样方向呢(这对于路径追踪采样生成入射光、IBL算法中采样计算radiance都很重要 ...
https://patapom.com/blog/Math/ImportanceSampling/ https://www.tobias-franke.eu/log/2014/03/30/notes ...
,那么利用经典积分方法是得不到积分结果的,但是蒙特卡洛积分方法告诉我们,利用一个随机变量对被积函数进行采样 ...
如果我们要求$f(x)$的积分,可化成, \[\int {\frac{{f(x)}}{{p(x)}}p(x)dx} \] $p(x)$是x的概率分布,假设${g(x) = \frac{{f(x)}}{{p(x)}}}$,然后在$p(x)$的分布下,抽取x个样本,当n足够大时,可以采用均值来近似 ...
有一个概率密度函数p(x),求解随机变量x基于此概率下某个函数f(x)的期望,表示如下: 如果概率分布形式比较简单的话,我们可以采用解析的方法: 如果f(x)过于复杂的话,直接求解就非常复杂,我们采用蒙特卡洛的方法。根据大数定理,当采样数量足够大的话,采样样本可以无限近似地表示原分布 ...
高斯分布的PDF: $f(x)= \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$ 其中$\mu$是期望,$\si ...
重要性采样(Importance Sampling)——TRPO与PPO的补充 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 上两篇博客已经介绍了信赖域策略优化(Trust Region Policy Optimization ...
MCMC全称是Markov Chain & Monte Carlo。 在概率图的框架中属于近似推断中的不确定性推断,与之相对的有近似推断中的变分推断(variational Inference)。 MCMC本质是基于“采样”的“随机”“近似”。有三个关键词。 ①采样是说MCMC本质 ...