基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分裂成两个不相连的子图,则称e为G的桥或割边 时间戳在图的深度优先遍历过程中,按照每个节点第一次 ...
tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往 膜你抄 自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一直没有时间学习。这两天好不容易学会了,写篇博客,也算记录一下。 一 tarjan求强连通分量 什么是强连通分量 引用来自度娘的一句话: 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间 vi gt vj 有一条从vi到v ...
2017-11-05 11:12 21 22788 推荐指数:
基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分裂成两个不相连的子图,则称e为G的桥或割边 时间戳在图的深度优先遍历过程中,按照每个节点第一次 ...
前言 网上现存\(60\%\)的文章都有明显的误区,本文章经过多次修改,能保证正确性 本文涉及强连通分量、弱连通分量、割点、割边、边双、点双,属于基本图论范畴 在有着直接关联的基础上又有所不同,本文基于把抽象的数组转换为在图上的意义,旨在让初学者能更轻松地理解并区分差别 ...
概述 在一个无向图中,若任意两点间至少存在两条“点不重复”的路径,则说这个图是点双连通的(简称双连通,biconnected) 在一个无向图中,点双连通的极大子图称为点双连通分量(简称双连通分量,Biconnected Component,BCC) 性质 任意两点间至少存在两条 ...
边,v为u的子树; 1.求割点: 割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点。 原理 ...
学习Tarjan前提须知 Tarjan是一个能够求强连通分量的算法。何为强联通?就是在一个图中,两点可以相互到达从而形成的一个环,我们称这个环为强联通,其中,在这个图中所能组成点最多的环,我们称它为强连通分量,而我们的Tarjan就能求强联通与强联通分量 甚至能进行缩点等一系列操作 算法内容 ...
算法描述 tarjan算法思想:从一个点开始,进行深度优先遍历,同时记录到达该点的时间(dfn记录到达i点的时间),和该点能直接或间接到达的点中的最早的时间(low[i]记录这个值,其中low的初始值等于dfn)。如图: 假设我们从1开始DFS,那么到达1的时间为1,到达2的时间 ...
百度百科 https://baike.baidu.com/item/tarjan%E7%AE%97%E6%B3%95/10687825?fr=aladdin 参考博文 http://blog.csdn.net/qq_34374664/article/details/77488976 ...
首先弄明白什么是点双连通分量.无向图中如果删掉一个点之后连通块数目变多,这个点叫做”割点”,删掉一条边后连通块增加则这条边为"桥".无向图dfs得到一棵搜索树,不在树上的边都认为是回向边(或者说反向边). 不存在割点的极大连通子图叫做无向图的双连通分量。由此定义,图中的桥和两端的两个点也组成了一个 ...