深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分、级数,所以看起来觉得很复杂 ...
转自:http: blog.csdn.net cxmscb article details 一 CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的。当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 的手写数字图片,输入层的神经元就有 个,如下图所示: 若在中间只使用一层隐藏层,参数w就有 多个 若输入的是 ...
2017-11-01 11:34 0 4000 推荐指数:
深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分、级数,所以看起来觉得很复杂 ...
用Tensorflow实现卷积神经网络(CNN) 本文系作者原创,转载请注明出处:https://www.cnblogs.com ...
卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com ...
卷积神经网络(CNN)因为在图像识别任务中大放异彩,而广为人知,近几年卷积神经网络在文本处理中也有了比较好的应用。我用TextCnn来做文本分类的任务,相比TextRnn,训练速度要快非常多,准确性也比较高。TextRnn训练慢得像蜗牛(可能是我太没有耐心),以至于我直接中断了训练,到现在我已经 ...
一.概述 卷积神经网络【Convolutional Neural Networks,CNN】是一类包含卷积计算且具有深度结构的前馈神经网络【Feedforward Neural Networks】是深度学习的代表算法之一。卷积神经网络具有表征学习【representation ...
基础概念: 卷积神经网络(CNN):属于人工神经网络的一种,它的权值共享的网络结构显著降低了模型的复杂度,减少了权值的数量。卷积神经网络不像传统的识别算法一样,需要对数据进行特征提取和数据重建,可以直接将图片作为网络的输入,自动提取特征,并且对图形的变形等具有高度不变形。在语音分析和图像识别 ...
前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败。如下图: 同样是在一个图片中找圆形,如果左边为训练样本,右边为测试样本,如果只训练了左边的情况,右边的一定会预测错误,然而在我们人眼看 ...
很玄学,没有修改参数,在test上的准确率从98%多变为99.1%了 参考链接:《简单粗暴Tensorflow》,狂吹 ...