~~变分贝叶斯推断(Variational Bayesian Inference) 变分贝叶斯方法主要处理复杂的统计模型,贝叶斯推断中参数可以分为 可观变量 和 不可观变量,这其中不可观部分进一步分为 隐含参数 和 隐含变量。 变分贝叶斯的核心任务是寻找一个 概率分布$Q\left( {x ...
涉及的领域可能有些生僻,骗不了大家点赞。但毕竟是人工智能的主流技术,在园子却成了非主流。 不可否认的是:乃值钱的技术,提高身价的技术,改变世界观的技术。 写在前面 关于变分,通常的课本思路是: GMM gt EM gt VI gt Variational Bayesian Gaussian Mixture GMM是个好东西,实用的模型,也是讲解收敛算法的一个好载体。 关于这部分内容,如果你懂中文 ...
2017-11-02 07:27 3 973 推荐指数:
~~变分贝叶斯推断(Variational Bayesian Inference) 变分贝叶斯方法主要处理复杂的统计模型,贝叶斯推断中参数可以分为 可观变量 和 不可观变量,这其中不可观部分进一步分为 隐含参数 和 隐含变量。 变分贝叶斯的核心任务是寻找一个 概率分布$Q\left( {x ...
最重要的一点是:Bayesian GMM为什么拟合的更好? PRML 这段文字做了解释: Ref: http://freemind.pluskid.org/machine-learning/deciding-the-number-of-clusterings/ 链接中提 ...
摘要:常规的神经网络权重是一个确定的值,贝叶斯神经网络(BNN)中,将权重视为一个概率分布。BNN的优化常常依赖于重参数技巧(reparameterization trick),本文对该优化方法进行概 ...
已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率: 表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件 ...
与Bayesian Learning在很多情况下是相通的,随着Deep Learning理论的发展, 我们看 ...
图像分割之Bayesian Matting 最近阅读了关于Matting的两篇文章,【Blue Screen Matting】和【A Bayesian Approach to Digital Matting】都是早期的(1996ACM,2001CVPR)图像融合Image Matting ...
(学习这部分内容大约需要花费1.1小时) 摘要 在我们感兴趣的大多数概率模型中, 计算后验边际或准确计算归一化常数都是很困难的. 变分推断(variational inference)是一个近似计算这两者的框架. 变分推断把推断看作优化问题: 我们尝试根据某种距离度量来寻找一个与真实后验尽可 ...
变分 对于普通的函数f(x),我们可以认为f是一个关于x的一个实数算子,其作用是将实数x映射到实数f(x)。那么类比这种模式,假设存在函数算子F,它是关于f(x)的函数算子,可以将f(x)映射成实数F ...