Batch Normalization导读 博客转载自:https://blog.csdn.net/malefactor/article/details/51476961 作者: 张俊林 为什么深度神经网络随着网络深度加深,训练起来越困难,收敛越来越慢?这是个在DL领域很接近本质的好问 ...
阅读 Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising 时,开始接触一些深度学习的知识 Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift 阅读笔记与实现 从B ...
2017-10-28 21:51 0 7754 推荐指数:
Batch Normalization导读 博客转载自:https://blog.csdn.net/malefactor/article/details/51476961 作者: 张俊林 为什么深度神经网络随着网络深度加深,训练起来越困难,收敛越来越慢?这是个在DL领域很接近本质的好问 ...
问题 训练神经网络是一个很复杂的过程,在前面提到了深度学习中常用的激活函数,例如ELU或者Relu的变体能够在开始训练的时候很大程度上减少梯度消失或者爆炸问题,但是却不能保证在训练过程中不出现该问题,例如在训练过程中每一层输入数据分布发生了改变了,那么我们就需要使用更小的learning ...
在深度学习中为了提高训练速度,经常会使用一些正正则化方法,如L2、dropout,后来Sergey Ioffe 等人提出Batch Normalization方法,可以防止数据分布的变化,影响神经网络需要重新学习分布带来的影响,会降低学习速率,训练时间等问题。提出使用batch ...
问题 训练神经网络是一个很复杂的过程,在前面提到了深度学习中常用的激活函数,例如ELU或者Relu的变体能够在开始训练的时候很大程度上减少梯度消失或者爆炸问题,但是却不能保证在训练过程中不出现该问题,例如在训练过程中每一层输入数据分布发生了改变了,那么我们就需要使用更小的learning ...
tflearn里 例子 https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_mnist.py LRN是放到pool后面,全连接层前面。 Batch ...
Abstract 1 问题 Internal Covariate Shift: 训练神经网络主要就是让各个层学习训练数据的分布。在深度神经网络的训练过程中,之前层(之前的任何一层)的参数的发生变化,那么前一层的输出数据分布也会发生变化,也即当前层的输入数据分布会发生变化。由于网络层的输入数据 ...
一、BN 的作用 1、具有快速训练收敛的特性:采用初始很大的学习率,然后学习率的衰减速度也很大 2、具有提高网络泛化能力的特性:不用去理会过拟合中drop out、L2正则项参数的选择问题 3、不需要使用使用局部响应归一化层,BN本身就是一个归一化网络层 4、可以把训练数据彻底打乱 ...
bn和ln的本质区别: batch normalization是纵向归一化,在batch的方向上对同一层每一个神经元进行归一化,即同一层每个神经元具有不同的均值和方差。 layer normalization 是横向归一化,即同一层的所有神经元具有相同的均值和方差。 bn ...