原文:线性代数笔记5——平面方程与矩阵

线性方程的几何意义 二元线性方程 该方程是一个二元线性方程组,包含两个方程,每个方程是一条直线,两条直线的交点就是该方程有唯一解,这就是二元线性方程的几何意义。 平面方程 空间内不在同一直线上的三点构成一个平面,平面方程可表示为ax by cz d。平面方程也称为三元线性方程。 方程x y z ,在xyz三个坐标轴上的截距分别是 , , , , , , , , ,下图是该函数在坐标轴上的示意图: ...

2018-01-08 01:25 0 7201 推荐指数:

查看详情

线性代数笔记1——矩阵的基本运算

  简单来说,矩阵是充满数字的表格。   A和B是两个典型的矩阵,A有2行2列,是2×2矩阵;B有2行3列,是2×3矩阵;A中的元素可用小写字母加行列下标表示,如a1,2 = 2, a2,2 = 4 矩阵加减法   两个矩阵相加或相减,需要满足两个矩阵的列数和行数一致。   加法交换律 ...

Sat Oct 14 05:22:00 CST 2017 0 13224
线性代数笔记24——微分方程和exp(At)

  原文:https://mp.weixin.qq.com/s/COpYKxQDMhqJRuMK2raMKQ   微分方程指含有未知函数及其导数的关系式,解微分方程就是找出未知函数。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的,叫做偏微分方程。常微分方程有时也简称方程。微分方程是一门 ...

Sat Nov 16 08:02:00 CST 2019 1 775
线性代数笔记9——消元矩阵与置换矩阵

消元矩阵   如果用矩阵表示一个有解的方程组,那么矩阵经过消元后,最终能变成一个上三角矩阵U。用一个三元一次方程组举例:   A经过一些列变换,最终得到了一个上三角矩阵U:   回代到方程组后可以直接求解:   如果上面的变换去掉增广矩阵,可以简写为:   矩阵 ...

Wed Aug 29 01:43:00 CST 2018 0 6781
线性代数笔记15——矩阵空间和秩1矩阵

矩阵空间   矩阵空间是对向量空间的扩展,因为矩阵的本质是向量,所以与向量空间类似,也存在矩阵空间。   在向量空间中,任意两个向量的加法和数乘仍然在该空间内。类似的,所有固定大小的矩阵也组成了矩阵空间,在空间内的任意两个矩阵的加法和数乘也在该空间内。例如,M是所有3×3矩阵构成的空间,空间 ...

Thu Oct 11 07:43:00 CST 2018 0 2436
线性代数笔记6——直线和曲线的参数方程

什么是参数方程   一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:     并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系 ...

Sat Jan 13 06:31:00 CST 2018 1 3601
线性代数笔记18——投影矩阵和最小二乘

一维空间的投影矩阵   先来看一维空间内向量的投影:   向量p是b在a上的投影,也称为b在a上的分量,可以用b乘以a方向的单位向量来计算,现在,我们打算尝试用更“贴近”线性代数的方式表达。   因为p趴在a上,所以p实际上是a的一个子空间,可以将它看作a放缩x倍,因此向量p可以用p ...

Sat Nov 03 01:43:00 CST 2018 1 9648
线性代数笔记23——矩阵的对角化和方幂

特征值矩阵   假设A有n个线性无关的特征向量x1,x2……xn,这些特征向量按列组成矩阵S,S称为特征向量矩阵。来看一下A乘以S会得到什么:   最终得到了S和一个以特征值为对角线的对角矩阵的乘积,这个对角矩阵就是特征值矩阵,用Λ表示:   没有人关心线性相关的特征向量,上式有意义 ...

Sat Dec 29 23:07:00 CST 2018 0 1638
线性代数笔记10——矩阵的LU分解

  在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积)。LU分解主要应用在数值分析中,用来解线性方程、求反矩阵或计算行列式。 什么是LU分解   如果有一个矩阵A,将A表示 ...

Thu Aug 30 02:21:00 CST 2018 0 9653
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM