决策树的剪枝 决策树为什么要剪枝?原因就是避免决策树“过拟合”样本。前面的算法生成的决策树非常的详细而庞大,每个属性都被详细地加以考虑,决策树的树叶节点所覆盖的训练样本都是“纯”的。因此用这个决策树来对训练样本进行分类的话,你会发现对于训练样本而言,这个树表现堪称完美,它可以100%完美正确 ...
转自穆晨 阅读目录 前言 回归树 回归树的优化工作 剪枝 模型树 回归树 模型树的使用 小结 回到顶部 前言 前文讨论的回归算法都是全局且针对线性问题的回归,即使是其中的局部加权线性回归法,也有其弊端 具体请参考前文 采用全局模型会导致模型非常的臃肿,因为需要计算所有的样本点,而且现实生活中很多样本都有大量的特征信息。 另一方面,实际生活中更多的问题都是非线性问题。 针对这些问题,有了树回归系列 ...
2017-10-08 16:23 0 1637 推荐指数:
决策树的剪枝 决策树为什么要剪枝?原因就是避免决策树“过拟合”样本。前面的算法生成的决策树非常的详细而庞大,每个属性都被详细地加以考虑,决策树的树叶节点所覆盖的训练样本都是“纯”的。因此用这个决策树来对训练样本进行分类的话,你会发现对于训练样本而言,这个树表现堪称完美,它可以100%完美正确 ...
前面我们了解了决策树和adaboost的决策树墩的原理和实现,在adaboost我们看到,用简单的决策树墩的效果也很不错,但是对于更多特征的样本来说,可能需要很多数量的决策树墩 或许我们可以考虑使用更加高级的弱分类器,下面我们看下CART(Classification ...
前面说了那么多,一直围绕着分类问题讨论,下面我们开始学习回归树吧, cart生成有两个关键点 如何评价最优二分结果 什么时候停止和如何确定叶子节点的值 cart分类树采用gini系数来对二分结果进行评价,叶子节点的值使用多数表决,那么回归树呢?我们直接看之前的一个数据集(天气 ...
决策树算法原理(ID3,C4.5) 决策树算法原理(CART分类树) 决策树的剪枝 CART决策树的生成就是递归地构建二叉树的过程。对回归树用平方误差最小化准则,对分类树用基尼指数最小化准则。 给定训练集 D = {(x1, y1), (x2, y2),...(xN, yN ...
分类回归树(CART,Classification And Regression Tree)也属于一种决策树,上回文我们介绍了基于ID3算法的决策树。作为上篇,这里只介绍CART是怎样用于分类的。 分类回归树是一棵二叉树,且每个非叶子节点都有两个孩子,所以对于第一棵子树其叶子节点数比非叶子节点 ...
概要 本部分介绍 CART,是一种非常重要的机器学习算法。 基本原理 CART 全称为 Classification And Regression Trees,即分类回归树。顾名思义,该算法既可以用于分类还可以用于回归。 克服了 ID3 算法只能处理离散型数据的缺点,CART ...
上一篇我们学习和实现了CART(分类回归树),不过主要是针对离散值的分类实现,下面我们来看下连续值的cart分类树如何实现 思考连续值和离散值的不同之处: 二分子树的时候不同:离散值需要求出最优的两个组合,连续值需要找到一个合适的分割点把特征切分为前后两块 这里不考虑特征的减少问题 切分 ...
在之前的决策树到集成学习里我们说了决策树和集成学习的基本概念(用了adaboost昨晚集成学习的例子),其后我们分别学习了决策树分类原理和adaboost原理和实现, 上两篇我们学习了cart(决策分类树),决策分类树也是决策树的一种,也是很强大的分类器,但是cart的深度太深,我们可以指定 ...