1. Mini-batch梯度下降法 介绍 假设我们的数据量非常多,达到了500万以上,那么此时如果按照传统的梯度下降算法,那么训练模型所花费的时间将非常巨大,所以我们对数据做如下处理: 如图所示,我们以1000为单位,将数据进行划分,令\(x^{\{1\}}=\{x^{(1)},x ...
一 调试处理 week 中提到有如下的超参数: hidden units mini batch size layers learning rate decay , , 颜色表示重要性,以及调试过程中可能会需要修改的程度。 那么如何选择超参数的值呢 首先是粗略地随机地寻找最优参数 建议使用图右的方式,原因如下: 对于图左的超参数分布而言,可能会使得参考性降低,我们假设超参 是学习率 ,超参 是 ,根 ...
2017-10-04 13:41 0 1571 推荐指数:
1. Mini-batch梯度下降法 介绍 假设我们的数据量非常多,达到了500万以上,那么此时如果按照传统的梯度下降算法,那么训练模型所花费的时间将非常巨大,所以我们对数据做如下处理: 如图所示,我们以1000为单位,将数据进行划分,令\(x^{\{1\}}=\{x^{(1)},x ...
更多笔记请火速前往 DeepLearning.ai学习笔记汇总 本周我们将学习如何配置训练/验证/测试集,如何分析方差&偏差,如何处理高偏差、高方差或者二者共存的问题,如何在神经网络中应用不同的正则化方法(如L2正则化、Dropout),梯度检测。 一、训练/验证/测试集 ...
一 批标准化 (batch normalization) Batch Normalization是Google2015年在论文:http://jmlr.org/proceedings/papers/v37/ioffe15.pdf中提出来的 训练深层的神经网络很复杂,因为训练时每一层输入 ...
首先我们理解一下,什么叫做正则化? 目的角度:防止过拟合 简单来说,正则化是一种为了减小测试误差的行为(有时候会增加训练误差)。我们在构造机器学习模型时,最终目的是让模型在面对新数据的时候,可以有很好的表现。当你用比较复杂的模型比如神经网络,去拟合数据时,很容易出现过拟合现象(训练集 ...
超参数:在机器学习中,超参数是在开始学习过程之前定义的参数,而不是通过训练得到的参数; 过拟合:神经网络模型在训练数据集上的准确率较高,但此模型在新的数据进行预测或分类时准确率较低,则说明这个模型的泛化能力差。 正则化:在损失函数中给每个参数 w 加上权重,引入模型复杂度指标,从而抑制模型 ...
介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录。 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记(博客园)&Andrew Ng机器学习课程笔记(CSDN)系列笔记中都有提到,所以这里不再赘述。 1、神经网络概要 ...
Logistic Regression 一、内容概要 Classification and Representation Classification Hypothe ...
一、深层神经网络 深层神经网络的符号与浅层的不同,记录如下: 用\(L\)表示层数,该神经网络\(L=4\) \(n^{[l]}\)表示第\(l\)层的神经元的数量,例如\(n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\) \(a^{[l ...