在不同层上设置不同的学习率,fine-tuning https://github.com/dgurkaynak/tensorflow-cnn-finetune ConvNets: AlexNet VGGNet ResNet AlexNet finetune ...
转载请注明处处: http: www.cnblogs.com darkknightzh p .html 参考网址: https: kratzert.github.io finetuning alexnet with tensorflow.html https: github.com kratzert finetune alexnet with tensorflow blob master fine ...
2017-09-28 21:32 0 4913 推荐指数:
在不同层上设置不同的学习率,fine-tuning https://github.com/dgurkaynak/tensorflow-cnn-finetune ConvNets: AlexNet VGGNet ResNet AlexNet finetune ...
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6592052.html 参考网址: https://www.tensorflow.org/install/install_linux#InstallingAnaconda(需跨越绝境长城 ...
/37459812/finetune-a-torch-model https://github.com/torc ...
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6015990.html BatchNorm具体网上搜索。 caffe中batchNorm层是通过BatchNorm+Scale实现的,但是默认没有bias。torch中的BatchNorm层使用 ...
以前使用Caffe的时候没注意这个,现在使用预训练模型来动手做时遇到了。在slim中的自带模型中inception, resnet, mobilenet等都自带BN层,这个坑在《实战Google深度学习框架》第二版这本书P166里只是提了一句,没有做出解答。 书中说训练时和测试时使用 ...
这是一篇需要仔细思考的博客; 预训练模型 tensorflow 在 1.0 之后移除了 models 模块,这个模块实现了很多模型,并提供了部分预训练模型的权重; 图像识别模型的权重下载地址 https://github.com/tensorflow/models/tree ...
官方教程中没有解释pooling层各参数的意义,找了很久终于找到,在tensorflow/python/ops/gen_nn_ops.py中有写: padding有两个参数,分别是‘SAME’和'VALID': 1.SAME:pool后进行填充,使输出图片 ...
还是分布式设备上的实现效率都受到一致认可。 CNN网络中的卷积和池化层应该怎么设置呢?tf相应的函数 ...