一、什么是贝叶斯推断 贝叶斯推断(Bayesian inference)是一种统计学方法,用来估计统计量的某种性质。 它是贝叶斯定理(Bayes' theorem)的应用。英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理。 贝叶斯推断 ...
ZhuSuan 是建立在Tensorflow上的贝叶斯深层学习的 python 库。 与现有的主要针对监督任务设计的深度学习库不同,ZhuSuan 的特点是深入到贝叶斯推理中,从而支持各种生成模式:传统的分层贝叶斯模型和近代深层次的生成模式。 用 ZhuSuan ,用户可以享受深度学习的强大适合和多GPU培训,同时可以使用生成模型来模拟复杂世界,利用未标记的数据,通过执行原理贝叶斯推理来处理不确定 ...
2017-09-23 11:09 0 1080 推荐指数:
一、什么是贝叶斯推断 贝叶斯推断(Bayesian inference)是一种统计学方法,用来估计统计量的某种性质。 它是贝叶斯定理(Bayes' theorem)的应用。英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理。 贝叶斯推断 ...
在贝叶斯个性化排序(BPR)算法小结中,我们对贝叶斯个性化排序(Bayesian Personalized Ranking, 以下简称BPR)的原理做了讨论,本文我们将从实践的角度来使用BPR做一个简单的推荐。由于现有主流开源类库都没有BPR,同时它又比较简单,因此用tensorflow ...
贝叶斯学习小结 朴素贝叶斯和贝叶斯信念网络学习,知识点以及个人一些理解的小结。 概率论只不过是把常识用数学公式表达了出来。 ——拉普拉斯 1.本文思路分析 (1)基本概率公式:条件概率,全概率,贝叶斯定理 (2)朴素贝叶斯算法:极大似然估计,判定准则,拉普拉斯平滑 (3)半朴素贝叶斯 ...
频率推理(Frequentist inference is a type of statistical inference that draws conclusions from sample dat ...
自我理解贝叶斯算法也就是通过概率来判断C是属于A类还是B类,下面是具体代码(python3.5 测试通过) 文字流程解释一波 1 ) 加载训练数据和训练数据对应的类别 2) 生成词汇集,就是所有训练数据的并集 3) 生成训练数据的向量集,也就是只包含0和1的向量集 ...
很久的时间没有更新了,一是因为每天加班到比较晚的时间,另外,公司不能上网,回家后就又懒得整理,最近在看机器学习实战的书籍,因此才又决定重新拾起原先的博客! 今天讲的是第三章的贝叶斯分类方法,我们从一个简简单单的例子开始入手:首先看(1)图中的例子,假设有一个装了7块时候的罐子,其中3块时 ...
朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同。比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数 ...
前不久简单学习了python,写了一个朴素贝叶斯算法: 这是数据挖掘书本上的一个例子的运行结果: ...