原文:Deep Learning基础--26种神经网络激活函数可视化

在神经网络中,激活函数决定来自给定输入集的节点的输出,其中非线性激活函数允许网络复制复杂的非线性行为。正如绝大多数神经网络借助某种形式的梯度下降进行优化,激活函数需要是可微分 或者至少是几乎完全可微分的 。此外,复杂的激活函数也许产生一些梯度消失或爆炸的问题。因此,神经网络倾向于部署若干个特定的激活函数 identity sigmoid ReLU 及其变体 。 下面是 个激活函数的图示及其一阶导 ...

2017-09-21 09:57 0 2188 推荐指数:

查看详情

神经网络中的激活函数

作者|Renu Khandelwal 编译|VK 来源|Medium 什么是神经网络激活函数? 激活函数有助于决定我们是否需要激活神经元。如果我们需要发射一个神经元那么信号的强度是多少。 激活函数神经元通过神经网络处理和传递信息的机制 为什么在神经网络中需要一个激活函数 ...

Sat Jul 04 01:17:00 CST 2020 0 2076
[Deep Learning] 神经网络基础

  目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网、人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革。要学习深度学习,那么首先要熟悉神经网络(Neural Networks,简称NN)的一些基本概念。当然,这里所说的神经网络不是生物学 ...

Mon Jun 20 04:31:00 CST 2016 9 76535
神经网络回顾-Relu激活函数

1. 神经元模型 以下引用自Poll的笔记:神经网络基础。   神经元是神经网络中最基本的结构,也可以说是神经网络的基本单元,它的设计灵感完全来源于生物学上神经元的信息传播机制。我们学过生物的同学都知道,神经元有两状态:兴奋和抑制。一般情况下,大多数的神经元是处于抑制状态,但是一旦 ...

Wed Jan 18 04:18:00 CST 2017 0 45663
神经网络与深度学习之激活函数

激活函数: 传统神经网络中最常用的两个激活函数,Sigmoid系(Logistic-Sigmoid、Tanh-Sigmoid)被视为神经网络的核心所在.从数学上来看,非线性的Sigmoid函数对中央区的信号增益较大,对两侧区的信号增益小,在信号的特征空间映射上,有很好的效果,通过对加权的输入进行 ...

Mon Oct 31 06:04:00 CST 2016 0 9406
总结一下神经网络中的激活函数

神经网络中的非线性是由激活层实现的,而激活层是由激活函数组成的,这里介绍四常见的激活函数。 1.Sigmoid函数首当其冲,该函数区别了神经网络与感知器(激活函数是阶跃函数),很明显它将输出限制在了(0,1)之间,因此可以与概率分布联系起来,也能用于输入的归一,该函数的输出值始终大于0,函数 ...

Wed Oct 27 05:40:00 CST 2021 0 111
神经网络激活函数及梯度消失

ICML 2016 的文章[Noisy Activation Functions]中给出了激活函数的定义:激活函数是映射 h:R→R,且几乎处处可导。 神经网络激活函数的主要作用是提供网络的非线性建模能力,如不特别说明,激活函数一般而言是非线性函数。假设一个示例神经网络中仅包含线性 ...

Tue Feb 06 06:11:00 CST 2018 0 1036
神经网络中的激活函数的作用和选择

如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。 正因为上面的原因,我们决定引入非线性函数作为激励函数 ...

Tue Jul 03 23:11:00 CST 2018 0 12083
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM