原文:常见的几种最优化方法(梯度下降法、牛顿法、拟牛顿法、共轭梯度法等)

我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题 在一定成本下,如何使利润最大化 等。最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素 的量 ,以使某一 或某些 指标达到最优的一些学科的总称。随着学习的深入,博主越来越发现最优化方法的重要性,学习和工作中遇到的大多问题都可以建模成一种最优化模型进行求解,比如我们现在学习的机器学习算法 ...

2017-09-16 20:32 9 87965 推荐指数:

查看详情

优化方法总结:梯度下降法牛顿牛顿共轭梯度等等

概述 优化问题就是在给定限制条件下寻找目标函数\(f(\mathbf{x}),\mathbf{x}\in\mathbf{R}^{\mathbf{n}}\)的极值点。极值可以分为整体极值或局部极值,整体极值即函数的最大/最小值,局部极值就是函数在有限邻域内的最大/最小值。通常都希望能求得函数的整体 ...

Thu Apr 06 08:18:00 CST 2017 0 4302
最优化方法课程总结三-- 最速下降法牛顿和线性共轭梯度

故事继续从选定方向的选定步长讲起 首先是下降最快的方向 -- 负梯度方向衍生出来的最速下降法 最速下降法 顾名思义,选择最快下降。包含两层意思:选择下降最快的方向,在这一方向上寻找最好的步长。到达后在下一个点重复该步骤。定方向 选步长 前进... 优化问题的模型:\(min f ...

Thu Dec 30 04:47:00 CST 2021 0 850
梯度下降法牛顿牛顿区别

梯度下降法是沿着梯度下降的算法,该算法的收敛速度受梯度大小影响非常大,当梯度小时算法收敛速度非常慢。 牛顿是通过把目标函数做二阶泰勒展开,通过求解这个近似方程来得到迭代公式,牛顿的迭代公式中用到了二阶导数来做指导,所以牛顿的收敛速度很快,但是由于要求二阶导,所以牛顿的时间复杂度非常高 ...

Tue Jun 25 06:10:00 CST 2019 0 627
最优化问题(牛顿梯度下降法

---恢复内容开始--- http://www.zhihu.com/question/19723347 引自知乎 牛顿是二阶收敛,梯度下降是一阶收敛, 所以牛顿就更快。如果更通俗地说的话,比如你想找一条最短的路径走到一个盆地的最底部,梯度下降法每次只从你当前所处位置选一个 ...

Sun Sep 04 18:13:00 CST 2016 0 3368
牛顿牛顿共轭梯度

牛顿 一: 最速下降法 下降法的迭代格式为xk+1=xk–αkdk">xk+1=xk–αkdk , 其中dk">dk为下降方向, 设gk=∇f(xk)≠0">gk=∇f(xk)≠0, 则下降 ...

Fri Apr 01 05:02:00 CST 2016 0 1867
梯度下降法牛顿、高斯牛顿、LM算法

假设有一个可导函数f(x),我们的目标函数是求解最小值$min\frac{1}{2}f(x)^{2}$,假设x给定的初始值是$x_0$ 1、梯度下降法 将f(x)在$x_0$处进行1阶泰勒级数展开:$f(x)=f(x_0)+f(x_0)^{'}(x-x_0)$。 则我们的目标函数变成 ...

Mon Feb 25 04:05:00 CST 2019 0 816
梯度下降法牛顿的总结与比较

机器学习的本质是建立优化模型,通过优化方法,不断迭代参数向量,找到使目标函数最优的参数向量。最终建立模型 通常用到的优化方法梯度下降方法牛顿牛顿等。这些优化方法的本质就是在更新参数。 一、梯度下降法   0、梯度下降的思想 ·    通过搜索方向和步长来对参数进行更新。其中搜索 ...

Wed May 09 03:36:00 CST 2018 3 10861
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM