原文:【神经网络和深度学习】笔记 - 第五章 深度神经网络学习过程中的梯度消失问题

文章导读: . 梯度消失问题 . 是什么导致了梯度消失问题 . 复杂神经网络中的梯度不稳定问题 之前的章节,我们利用一个仅包含一层隐藏层的简单神经网络就在MNIST识别问题上获得了 左右的准确率。我们于是本能会想到用更多的隐藏层,构建更复杂的神经网络将会为我们带来更好的结果。 就如同在进行图像模式识别的时候,第一层的神经层可以学到边缘特征,第二层的可以学到更复杂的图形特征,例如三角形,长方形等,第 ...

2017-09-14 12:22 1 3787 推荐指数:

查看详情

神经网络深度学习(5):梯度消失问题

本文总结自《Neural Networks and Deep Learning》第5的内容。 问题引入 随着隐藏层数目的增加,分类准确率反而下降了。为什么? 消失梯度问题(The vanishing gradient problem) 先看一组试验数据,当神经网络在训练过程中 ...

Mon Dec 26 06:59:00 CST 2016 0 18242
神经网络深度学习[邱锡鹏] 第五章习题解析

5-1 5-2 5-3 主要作用: 降维和升维: 每个1×1的卷积核都试图提取基于相同像素位置的特征的融合表达。可以实现特征升维和降维的目的。 比如,一张500 * 500且厚度 ...

Wed Nov 03 22:07:00 CST 2021 0 1792
深度卷积神经网络学习笔记(一)

1.卷积操作实质: 输入图像(input volume),在深度方向上由很多slice组成,对于其中一个slice,可以对应很多神经元,神经元的weight表现为卷积核的形式,即一个方形的滤波器(filter)(如3X3),这些神经元各自分别对应图像的某一个局部区域(local ...

Sun Jul 31 05:20:00 CST 2016 0 23613
神经网络深度学习

这个人总结的太好了 , 忍不住想学习一下,放到这里。 为了尊重原创作者,说明一下是转载于:http://blog.csdn.net/MyArrow/article/details/51322433 学习总结 1. 简介 神经网络深度学习是由Michael Nielsen所写 ...

Wed Oct 25 20:21:00 CST 2017 0 1677
神经网络深度学习 邱锡鹏 第5 卷积神经网络 读书笔记

卷积神经网络(CNN)是一种具有局部连接、权重共享等特性的深层前馈神经网络。 卷积神经网络最早主要是用来处理图像信息。在用全连接前馈网络来处理图像时,会存在以下两个问题: (1)参数太多:随着隐藏层神经元数量的增多,参数的规模也会急剧增加。这会导致整个神经网络的训练效率非常低,也很容易出现 ...

Fri Feb 21 06:05:00 CST 2020 0 810
神经网络深度学习

深度学习引言 AI是最新的电力 大约在一百年前,我们社会的电气化改变了每个主要行业,从交通运输行业到制造业、医疗保健、通讯等方面,我认为如今我们见到了AI明显的令人惊讶的能量,带来了同样巨大的转变。 什么是神经网络神经网络的一部分神奇之处在于,当你实现它之后,你要做的只是输入x,就能 ...

Mon Oct 25 04:35:00 CST 2021 0 278
深度学习篇】--神经网络解决梯度弥散问题

一、前述 在梯度下降,随着算法反向反馈到前面几层,梯度会越来越小,最终,没有变化,这时或许还没有收敛到比较好的解,这就是梯度消失问题深度学习遭受不稳定的梯度,不同层学习在不同的速度上 二、解决梯度弥散和消失方法一,初始化权重使用he_initialization 1、举例 ...

Thu Mar 29 00:42:00 CST 2018 0 2063
神经网络深度学习之——前馈神经网络

前面一我们详细讲解了神经网络的组成,工作原理,信号在网络如何流动,以及如何求解每一个输入信号赋予的权重等计算过程;同时我们还构建了一个逻辑回归网模型来解决鸢尾花分类问题,很明显,这种网络很“浅”,但它对于分类鸢尾花数据还是非常有效的,而且不仅仅是鸢尾花,对于有需要的其他二分类问题,该模型 ...

Tue Jul 17 19:10:00 CST 2018 0 2056
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM