转自 https://blog.csdn.net/sscc_learning/article/details/79814146 ...
卷积操作是使用一个二维卷积核在在批处理的图片中进行扫描,具体的操作是在每一张图片上采用合适的窗口大小在图片的每一个通道上进行扫描。 权衡因素:在不同的通道和不同的卷积核之间进行权衡 在tensorflow中的函数为例: conv d: 任意的卷积核,能同时在不同的通道上面进行卷积操作。 卷积核的卷积过程是按照 strides 参数来确定的,比如 strides , , , 表示卷积核对每个像素点进 ...
2017-09-12 11:45 0 5362 推荐指数:
转自 https://blog.csdn.net/sscc_learning/article/details/79814146 ...
具体可以看这篇文章,写的很详细。https://blog.csdn.net/xys430381_1/article/details/82529397 ...
feature map、卷积核、卷积核个数、filter、channel的概念解释 feather map的理解 在cnn的每个卷积层,数据都是以三维形式存在的。你可以把它看成许多个二维图片叠在一起(像豆腐皮一样),其中每一个称为一个feature map。 feather map 是怎么生成 ...
卷积 Convolution 卷积核也称为滤波器filter。滤波器大小为,其中为深度,和输入feature map的channel数相同。每一层的filter数量和输出channel数相同。输入的每个channel和对应深度的卷结核进行卷积,然后加和,组成输出的一个 ...
原文地址:https://blog.csdn.net/xys430381_1/article/details/82529397 feature map、卷积核、卷积核个数、filter、channel的概念解释 feather map的理解 在cnn的每个卷积层,数据都是 ...
卷积和反卷积在CNN中经常被用到,想要彻底搞懂并不是那么容易。本文主要分三个部分来讲解卷积和反卷积,分别包括概念、工作过程、代码示例,其中代码实践部分主结合TensorFlow框架来进行实践。给大家介绍一个卷积过程的可视化工具,这个项目是github上面的一个开源项目 ...
卷积层尺寸的计算原理 输入矩阵格式:四个维度,依次为:样本数、图像高度、图像宽度、图像通道数 输出矩阵格式:与输出矩阵的维度顺序和含义 ...
pytorch卷积神经网络训练 关于卷积神经网络(CNN)的基础知识此处就不再多说,详细的资料参考我在CSDN的说明 CNN卷积神经网络原理流程整理 以下是一个可视化展示卷积过程的网站 https://www.cs.ryerson.ca/~aharley/vis/conv/ 一、使用 ...