一.决策树 决策树一般以选择属性的方式不同分为id3(信息增益),c4.5(信息增益率),CART(基尼系数),只能进行线性的分割,是一种贪婪的算法,其中sklearn中的决策树分为回归树和分类树两种,默认的是CART的决策树,下面介绍CART决策树 分支条件:二分类问题(只用来构建二叉树 ...
决策树这节中涉及到了很多pandas中的新的函数用法等,所以我单拿出来详细的理解一下这些pandas处理过程,进一步理解pandas背后的数据处理的手段原理。 决策树程序 数据载入 pd.read csv 竟然可以直接请求URL... ... DataFrame.head 可以查看前面几行的数据,默认是 行 DataFrame.info 可以查看数据的统计情报 数据载入 import pandas ...
2017-09-08 18:12 0 1398 推荐指数:
一.决策树 决策树一般以选择属性的方式不同分为id3(信息增益),c4.5(信息增益率),CART(基尼系数),只能进行线性的分割,是一种贪婪的算法,其中sklearn中的决策树分为回归树和分类树两种,默认的是CART的决策树,下面介绍CART决策树 分支条件:二分类问题(只用来构建二叉树 ...
前言 过去几个月,一直在学习机器学习模型,输入只是学习的一部分,输出可以帮助自己更熟练地掌握概念和知识。把一个复杂的事物简单的讲述出来,才能表示真正弄懂了这个知识。所以我将在博客中尽量简单地把这些模型讲述出来,以加深自己的掌握,也为他人提供一点点参考。感谢大神刘建平Pinard的博客,如有 ...
pandas DataFrame进行向量化运算时,是根据行和列的索引值进行计算的,而不是行和列的位置: 1. 行和列索引一致: 2. 行索引一致,列索引不一致: 没有对应索引的值,会用空来代替进行计算 3. 行索引不一致,列索引一致 ...
决策树 与SVM类似,决策树在机器学习算法中是一个功能非常全面的算法,它可以执行分类与回归任务,甚至是多输出任务。决策树的算法非常强大,即使是一些复杂的问题,也可以良好地拟合复杂数据集。决策树同时也是随机森林的基础组件,随机森林在当前是最强大的机器学习算法之一。 在这章我们会先讨论如何使用 ...
决策树分类 决策树分类归类于监督学习,能够根据特征值一层一层的将数据集进行分类。它的有点在于计算复杂度不高,分类出的结果能够很直观的呈现,但是也会出现过度匹配的问题。使用ID3算法的决策树分类第一步需要挑选出一个特征值,能够将数据集最好的分类,之后递归构成分类树。使用信息增益,来得到最佳 ...
决策树的目标是从一组样本数据中,根据不同的特征和属性,建立一棵树形的分类结构。 决策树的学习本质上是从训练集中归纳出一组分类规则,得到与数据集矛盾较小的决策树,同时具有很好的泛化能力。决策树学习的损失函数通常是正则化的极大似然函数,通常采用启发式方法,近似求解这一最优化问题。 算法原理 ...
引言 神经网络模型,特别是深度神经网络模型,自AlexNet在Imagenet Challenge 2012上的一鸣惊人,无疑是Machine Learning Research上最靓的仔,各种进展和突破层出不穷,科学家工程师人人都爱它。 机器学习研究发展至今,除了神经网络模型这种 ...
看到一篇关于决策树比较好的文章,转录过来,内容如下: 决策树 决策树里面最重要的就是节点和分裂条件,直接决定了一棵树的好坏。用一个简单的例子先说明一下: 来一段情景对话: 母亲:女儿,你也不小了,还没对象!妈很揪心啊,这不托人给你找了个对象,明儿去见个面吧! 女儿:年纪 ...