时间序列分析之ARIMA模型预测__R篇 之前一直用SAS做ARIMA模型预测,今天尝试用了一下R,发现灵活度更高,结果输出也更直观。现在记录一下如何用R分析ARIMA模型。 1. 处理数据 1.1. 导入forecast包 forecast包是一个封装 ...
昨天刚刚把导入数据弄好,今天迫不及待试试怎么做预测,网上找的帖子跟着弄的。 第一步.对原始数据进行分析 一.ARIMA预测时间序列 指数平滑法对于预测来说是非常有帮助的,而且它对时间序列上面连续的值之间相关性没有要求。但是,如果你想使用指数平滑法计算出预测区间,那么预测误差必须是不相关的, 而且必须是服从零均值 方差不变的正态分布。即使指数平滑法对时间序列连续数值之间相关性没有要求,在某种情况下, ...
2017-09-06 13:51 0 21290 推荐指数:
时间序列分析之ARIMA模型预测__R篇 之前一直用SAS做ARIMA模型预测,今天尝试用了一下R,发现灵活度更高,结果输出也更直观。现在记录一下如何用R分析ARIMA模型。 1. 处理数据 1.1. 导入forecast包 forecast包是一个封装 ...
相关文章:时间序列分析之ARIMA模型预测__SAS篇 之前一直用SAS做ARIMA模型预测,今天尝试用了一下R,发现灵活度更高,结果输出也更直观。现在记录一下如何用R分析ARIMA模型。 1. 处理数据 1.1. 导入forecast包 forecast包是一个封装 ...
(图片来自百度) 数据 分析数据第一步还是套路------画图 数据看上去比较平整,但是由于数据太对看不出具体情况,于是将只取前300个数据再此画图 这数据看上去很不错,感觉有隐藏周期的意思 代码 使用ARIMA模型(ARMA) 第一步观察数据是否是平稳 ...
什么是 ARIMA模型 ARIMA模型的全称叫做自回归移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model)。也记作ARIMA(p,d,q),是统计模型(statistic model)中最常见的一种用来进行时间序列 ...
本篇介绍时间序列预测常用的ARIMA模型,通过了解本篇内容,将可以使用ARIMA预测一个时间序列。 什么是ARIMA? ARIMA是'Auto Regressive Integrated Moving Average'的简称。 ARIMA是一种基于时间序列历史值 ...
本文我们使用4个时间序列模型对每周的温度序列建模。第一个是通过auto.arima获得的,然后两个是SARIMA模型,最后一个是Buys-Ballot方法。 我们使用以下数据 k=620n=nrow(elec)futu=(k+1):ny=electricite$Load[1:k]plot(y ...
值上的预测误差来对当前做预测的模型。 ARIMA整合了自回归项AR和滑动平均项MA。 ARIM ...
原文链接:http://tecdat.cn/?p=24492 原文出处:拓端数据部落公众号 介绍 此分析的目的是构建一个过程,以在给定时变波动性的情况下正确估计风险价值。风险价值被广泛用于衡量金融机构的市场风险。我们的时间序列数据包括 1258 天的股票收益。为了解释每日收益率方差的一小部分 ...