Spark Structured streaming API支持的输出源有:Console、Memory、File和Foreach。其中Console在前两篇博文中已有详述,而Memory使用非常简单。本文着重介绍File和Foreach两种方式,并介绍如何在源码基本扩展新的输出方式。 1. ...
Spark Structured Streaming目前的 . . 版本只支持输入源:File kafka和socket。 . Socket Socket方式是最简单的数据输入源,如Quick example所示的程序,就是使用的这种方式。用户只需要指定 socket 形式并配置监听的IP和Port即可。 val scoketDF spark.readStream .format socket ...
2017-09-03 19:43 0 3308 推荐指数:
Spark Structured streaming API支持的输出源有:Console、Memory、File和Foreach。其中Console在前两篇博文中已有详述,而Memory使用非常简单。本文着重介绍File和Foreach两种方式,并介绍如何在源码基本扩展新的输出方式。 1. ...
Spark Struntured Streaming是Spark 2.1.0版本后新增加的流计算引擎,本博将通过几篇博文详细介绍这个框架。这篇是介绍Spark Structured Streaming的基本开发方法。以Spark 自带的example进行测试和介绍,其为 ...
1. 结构 1.1 概述 Structured Streaming组件滑动窗口功能由三个参数决定其功能:窗口时间、滑动步长和触发时间. 窗口时间:是指确定数据操作的长度; 滑动步长:是指窗口每次向前移动的时间长 ...
1. 流处理的场景 我们在定义流处理时,会认为它处理的是对无止境的数据集的增量处理。不过对于这个定义来说,很难去与一些实际场景关联起来。在我们讨论流处理的优点与缺点时,先介绍一下流处理的常用场景。 通知与警报:可能流应用最明显的例子就是通知(notification)与警报 ...
5. 实战Structured Streaming 5.1. Static版本 先读一份static 数据: val static = spark.read.json("s3://xxx/data/activity-data/") static.printSchema root ...
目录 Part V. Streaming Stream Processing Fundamentals 1.概念 2.Stream Processing Design Points 3.Spark’s ...
简介 Spark Streaming Spark Streaming是spark最初的流处理框架,使用了微批的形式来进行流处理。 提供了基于RDDs的Dstream API,每个时间间隔内的数据为一个RDD,源源不断对RDD进行处理来实现流计算。 Structured ...
简介 Spark Streaming Spark Streaming是spark最初的流处理框架,使用了微批的形式来进行流处理。 提供了基于RDDs的Dstream API,每个时间间隔内的数据为一个RDD,源源不断对RDD进行处理来实现流计算 Structured Streaming ...