原文:单变量微积分笔记4——导数4(反函数的导数)

什么是反函数 一般地,设函数y f x x A 的值域是C,若找得到一个函数g y 在每一处g y 都等于x,这样的函数x g y y C 叫做函数y f x x A 的反函数,记作y f x 。反函数y f x 的定义域 值域分别是函数y f x 的值域 定义域。最具有代表性的反函数就是对数函数与指数函数。 例 :y x 的反函数是y . x . y x的反函数是y log x 例 :求函数 x ...

2017-09-07 05:49 1 1557 推荐指数:

查看详情

变量微积分笔记3——导数3(隐函数导数

函数的扩展形式   f(x) = xn的导数:f’(x) = nxn-1,n是整数,该公式对f(x) = xm/n, m,n 是整数同样适用。   推导过程:   两端同时求导,由于y是x的函数,根据链式求导法则: 什么是隐函数   引自知乎:   “如果方程F(x,y ...

Mon Sep 04 02:50:00 CST 2017 0 1107
变量微积分笔记1——偏导数

  在一元函数中,我们已经知道导数就是函数的变化率。对于二元函数我们同样要研究它的“变化率”。   在xOy平面内,当动点由P(x0,y0)沿不同方向变化时,函数f(x,y)的变化快慢一般说来是不同的,因此就需要研究f(x,y)在(x0,y0)点处沿不同方向的变化率。   在这里我们只学习函数 ...

Tue Jan 16 04:31:00 CST 2018 0 6781
变量微积分笔记1——导数1(导数的基本概念)

什么是导数   导数是高数中的重要概念,被应用于多种学科。   从物理意义上讲,导数就是求解变化率的问题;从几何意义上讲,导数就是求函数在某一点上的切线的斜率。   我们熟知的速度公式:v = s/t,这求解的是平均速度,实际上往往需要知道瞬时速度:   当t趋近于t0,即t-t0 ...

Mon Aug 28 05:31:00 CST 2017 2 2302
变量微积分笔记5——导数5(指数函数和对数函数导数

指数函数的性质   先来复习一下中学的课程: 指数函数导数   对f(x) = ax求导:   ax右侧的那个极限似乎没有办法继续简化了,如果这个极限看作关于a的函数(之所以将极限看作关于a的函数,是因为在这个极限中,a是未知的,Δx是已知的):   函数在某一点导数 ...

Mon Sep 11 18:37:00 CST 2017 0 8000
变量微积分笔记5——梯度与方向导数

  梯度一词有时用于斜度,也就是一个曲面沿着给定方向的倾斜程度。   梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。   在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性 ...

Fri Feb 02 18:07:00 CST 2018 0 4491
反函数导数

谈谈反函数的求导法则 韦磊 2011-10-04 22:10:11 昨天的文章中提到过反函数的求导法则。反函数的求导法则是:反函数导数是原函数导数的倒数。这话听起来很简单,不过很多人因此犯了迷糊: y=x3的导数是y'=3x2,其反函数是y=x1 ...

Fri Aug 19 23:02:00 CST 2016 0 2721
微积分】 02 - 连续和导数

1. 连续函数 1.1 连续和间断   实数的完备性是分析学的基础,它自然也是微积分的出发点。极限是实数完备性的具体描述,我们的微积分之旅也从这里开始。在《实数系统》中,我们已经讨论了实数的完备性和极限的概念,这里把极限的概念引入到函数中。在集合论中,函数被看成是集合间的映射,当在集合中引入 ...

Wed Mar 02 18:16:00 CST 2016 5 1520
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM