最近学习遇到了代价函数,在网上搜索整理了几个容易混淆的概念: 一、定义 损失函数定义在单个样本上,算的是一个样本的误差。 代价函数定义在整个训练集上,是所有样本误差的平均,也就是损失函数的平均。 目标函数定义为最终需要优化的函数,等于经验风险 + 结构风险(也就是Cost Function ...
http: www.cnblogs.com Belter p .html 注:代价函数 有的地方也叫损失函数,Loss Function 在机器学习中的每一种算法中都很重要,因为训练模型的过程就是优化代价函数的过程,代价函数对每个参数的偏导数就是梯度下降中提到的梯度,防止过拟合时添加的正则化项也是加在代价函数后面的。在学习相关算法的过程中,对代价函数的理解也在不断的加深,在此做一个小结。 . 什么 ...
2017-08-23 20:14 0 1471 推荐指数:
最近学习遇到了代价函数,在网上搜索整理了几个容易混淆的概念: 一、定义 损失函数定义在单个样本上,算的是一个样本的误差。 代价函数定义在整个训练集上,是所有样本误差的平均,也就是损失函数的平均。 目标函数定义为最终需要优化的函数,等于经验风险 + 结构风险(也就是Cost Function ...
有代价,或者说是损失。分类算法的目标就是让它错的最少,也就是代价最小。 损失函数又叫误差函数(预测值与 ...
首先给出结论:损失函数和代价函数是同一个东西,目标函数是一个与他们相关但更广的概念,对于目标函数来说在有约束条件下的最小化就是损失函数(loss function) 举个例子解释一下:(图片来自Andrew Ng Machine Learning公开课视频 ...
原文:https://blog.csdn.net/jasonzzj/article/details/52017438 本文只讨论Logistic回归的交叉熵,对Softmax回归的交叉熵类似。 ...
http://blog.csdn.net/jasonzzj/article/details/52017438 ...
前言 交叉熵损失函数 交叉熵损失函数的求导 前言 说明:本文只讨论Logistic回归的交叉熵,对Softmax回归的交叉熵类似。 首先,我们二话不说,先放出 ...
转载自:线性回归与非线性回归:1.0一元线性回归与代价函数(损失函数) 回归分析:用来建立方程模拟两个或者多个变量之间如何关联 因变量:被预测的变量(结果/标签),输出 自变量:被用来进行预测的变量(特征),输入 一元线性回归:包含一个自变量与一个因变量,并且变量的关系用一条 ...
Q:为什么会提及关于代价函数的理解? A:在 ML 中线性回归、逻辑回归等总都是绕不开代价函数。 理解代价函数:是什么?作用原理?为什么代价函数是这个? 1、代价函数是什么? 代价函数就是用于找到最优解的目的函数,这也是代价函数的作用。 损失函数(Loss Function ...