原文:https://blog.csdn.net/jasonzzj/article/details/52017438 本文只讨论Logistic回归的交叉熵,对Softmax回归的交叉熵类似。 交叉熵的公式 以及J(θ)对">J(θ)对J ...
前言 交叉熵损失函数 交叉熵损失函数的求导 前言 说明:本文只讨论Logistic回归的交叉熵,对Softmax回归的交叉熵类似。 首先,我们二话不说,先放出交叉熵的公式: J m i my i log h x i y i log h x i , 以及 J 对 参数 的偏导数 用于诸如梯度下降法等优化算法的参数更新 ,如下: jJ m i m h x i y i x i j 但是在大多论文或数教 ...
2017-05-19 10:09 0 1385 推荐指数:
原文:https://blog.csdn.net/jasonzzj/article/details/52017438 本文只讨论Logistic回归的交叉熵,对Softmax回归的交叉熵类似。 交叉熵的公式 以及J(θ)对">J(θ)对J ...
http://blog.csdn.net/jasonzzj/article/details/52017438 ...
本文是《Neural networks and deep learning》概览 中第三章的一部分,讲machine learning算法中用得非常多的交叉熵代价函数。 1.从方差代价函数说起 代价函数经经常使用方差代价函数(即採用均方误差MSE),比方对于一个神经元 ...
转自:http://blog.csdn.net/u014313009/article/details/51043064,感谢分享! 交叉熵代价函数(Cross-entropy cost function)是用来衡量人工神经网络(ANN)的预测值与实际值的一种方式。与二次代价函数相比,它能更有 ...
交叉熵代价函数(Cross-entropy cost function)是用来衡量人工神经网络(ANN)的预測值与实际值的一种方式。与二次代价函数相比,它能更有效地促进ANN的训练。在介绍交叉熵代价函数之前,本文先简要介绍二次代价函数,以及其存在的不足 ...
交叉熵代价函数与二次代价函数 交叉熵代价函数(Cross-entropy cost function)是用来衡量人工神经网络(ANN)的预测值与实际值的一种方式。与二次代价函数相比,它能更有效地促进ANN的训练。在介绍交叉熵代价函数之前,本文先简要介绍二次代价函数 ...
记录一下,方便复习 总结: 参考:https://blog.csdn.net/lcczzu/article/details/88873854//交叉熵损失函数的作用及公式推导 ...
来源:https://www.jianshu.com/p/c02a1fbffad6 简单易懂的softmax交叉熵损失函数求导 来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福大众,岂不美哉~ softmax经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中 ...