https://www.cnblogs.com/bigmonkey/p/7410517.html 和、差、积、商求导法则 设u=u(x),v=v(x)都可导,则: (Cu)’ = Cu’, C是常数 (u ± v)’ = u’ ± v’ (uv)’ = u’v + uv ...
和 差 积 商求导法则 设u u x ,v v x 都可导,则: Cu Cu , C是常数 u v u v uv u v uv u v u v uv v 不解释,下面给出 的推导过程 乘法法则的推导过程 乘法法则可扩展: 除法法则的推导过程 示例 :f x 根据除法法则: 示例 :f x n 根据除法法则: 上式结果也可直接根据幂函数求导法则得出,幂函数f x Xn的导数:f x nxn 示例 : ...
2017-08-28 22:12 3 6694 推荐指数:
https://www.cnblogs.com/bigmonkey/p/7410517.html 和、差、积、商求导法则 设u=u(x),v=v(x)都可导,则: (Cu)’ = Cu’, C是常数 (u ± v)’ = u’ ± v’ (uv)’ = u’v + uv ...
什么是反函数 一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y= ...
在一元函数中,我们已经知道导数就是函数的变化率。对于二元函数我们同样要研究它的“变化率”。 在xOy平面内,当动点由P(x0,y0)沿不同方向变化时,函数f(x,y)的变化快慢一般说来是不同的,因此就需要研究f(x,y)在(x0,y0)点处沿不同方向的变化率。 在这里我们只学习函数 ...
幂函数的扩展形式 f(x) = xn的导数:f’(x) = nxn-1,n是整数,该公式对f(x) = xm/n, m,n 是整数同样适用。 推导过程: 两端同时求导,由于y是x的函数,根据链式求导法则: 什么是隐函数 引自知乎: “如果方程F(x,y ...
什么是导数 导数是高数中的重要概念,被应用于多种学科。 从物理意义上讲,导数就是求解变化率的问题;从几何意义上讲,导数就是求函数在某一点上的切线的斜率。 我们熟知的速度公式:v = s/t,这求解的是平均速度,实际上往往需要知道瞬时速度: 当t趋近于t0,即t-t0 ...
梯度一词有时用于斜度,也就是一个曲面沿着给定方向的倾斜程度。 梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。 在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性 ...
常数和基本初等函数的求导公式 (1) \((C)'=0\) (2) \((x^u)'=ux^{u-1}\) (3) \((\sin x)'=\cos x\) (4) \((\cos x)'=-\sin x\) (5) \((\tan x)'=\sec^2x\) 注:\(\sec x=\frac ...
指数函数的性质 先来复习一下中学的课程: 指数函数的导数 对f(x) = ax求导: ax右侧的那个极限似乎没有办法继续简化了,如果这个极限看作关于a的函数(之所以将极限看作关于a的函数,是因为在这个极限中,a是未知的,Δx是已知的): 函数在某一点导数 ...