原文:【Coursera】基于朴素贝叶斯的中文多分类器

一 算法说明 为了便于计算类条件概率 P x c ,朴素贝叶斯算法作了一个关键的假设:对已知类别,假设所有属性相互独立。 当使用训练完的特征向量对新样本进行测试时,由于概率是多个很小的相乘所得,可能会出现下溢出,故对乘积取自然对数解决这个问题。 在大多数朴素贝叶斯分类器中计算特征向量时采用的都是词集模型,即将每个词的出现与否作为一个特征。而在该分类器中采用的是词袋模型,即文档中每个词汇的出现次数作 ...

2017-08-19 13:37 1 2233 推荐指数:

查看详情

朴素分类

先上问题吧,我们统计了14天的气象数据(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,c ...

Thu Jul 12 01:20:00 CST 2012 5 19654
模型构建分类器的设计与实现

多种模型构建及文本分类的实现 作者:白宁超 2015年9月29日11:10:02 摘要:当前数据挖掘技术使用最为广泛的莫过于文本挖掘领域,包括领域本体构建、短文本实体抽取以及代码的语义级构件方法研究。常用的数据挖掘功能包括分类、聚类、预测和关联四大模型。本文针对四大模型 ...

Wed Sep 30 02:26:00 CST 2015 3 7774
朴素和情感分类

朴素和情感分类 分类问题在人类和机器智能中广泛应用:邮件分类、作业打分等。这篇博客介绍了朴素方法及其在文本分类方面的应用。其中文本分类的例子采用情感分析,就是从文本中进行情感抽取,并判断作者对特定事物的态度是积极还是消极,例如影评和书评的分析。情感分析中最简单的任务是二分类任务,文字 ...

Fri Apr 19 19:30:00 CST 2019 0 1067
朴素的学习与分类

概念简介: 朴素斯基于贝叶斯定理,它假设输入随机变量的特征值是条件独立的,故称之为“朴素”。简单介绍贝叶斯定理: 乍看起来似乎是要求一个概率,还要先得到额外三个概率,有用么?其实这个简单的公式非常贴切人类推理的逻辑,即通过可以观测的数据,推测不可观测的数据。举个例子,也许你在办 ...

Sun Sep 23 01:52:00 CST 2012 1 2919
朴素分类算法原理

一个简单的例子 朴素算法是一个典型的统计学习方法,主要理论基础就是一个公式,公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X ...

Fri May 05 03:21:00 CST 2017 1 12244
朴素分类算法

贝叶斯定理是关于随机事件A和B的条件概率的一则定理(比如常见的:P(A|B)是在B发生的情况下A发生的可能性)。 朴素的含义是各特征相互独立,且同等重要。某些 分类算法均以贝叶斯定理为基础。由此产生了 朴素分类算法。 朴素分类算法的思想基础是:对于给出 ...

Tue Oct 22 21:54:00 CST 2019 0 579
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM