摘要:上一节对决策树的基本原理进行了梳理,本节主要根据其原理做一个逻辑的实现,然后调用sklearn的包实现决策树分类。 这里主要是对分类树的决策进行实现,算法采用ID3,即以信息增益作为划分标准进行。 首先计算数据集的信息熵,代码如下: 然后是依据 ...
本文结构: 是什么 有什么算法 数学原理 编码实现算法 . 是什么 简单地理解,就是根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为几类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。 . 有什么算法 常用的几种决策树算法有ID C . CART: ID :选择信息熵增益最大的feature作为n ...
2017-08-14 08:52 0 6822 推荐指数:
摘要:上一节对决策树的基本原理进行了梳理,本节主要根据其原理做一个逻辑的实现,然后调用sklearn的包实现决策树分类。 这里主要是对分类树的决策进行实现,算法采用ID3,即以信息增益作为划分标准进行。 首先计算数据集的信息熵,代码如下: 然后是依据 ...
决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。决策树尤其在以数模型为核心的各种集成算法中表现突出。开放平台:Jupyter lab根据菜菜的sklearn课堂实效生成一棵 ...
--------------------------------------------------------------------------------------- 本系列文章为《机器学习实战》学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正。 源码在Python ...
参考书籍:《机器学习》(周志华) 说 明:本篇内容为读书笔记,主要参考教材为《机器学习》(周志华)。详细内容请参阅书籍——第4章 决策树。部分内容参考网络资源,在此感谢所有原创者的工作 ...
1.决策树 决策树是一种机器学习的方法。决策树的生成算法有ID3, C4.5和C5.0等。决策树是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。通过学习样本得到一个决策树,这个决策树能够对新的数据给出正确的分类 ...
七、多变量决策树 1、从“树”到“规则” 一棵决策树对应于一个“规则集”,每个从根结点到叶结点的分支路径对应于一条规则。 举例: 好处: (1)改善可理解性 (2)进一步提升泛化能力( 由于转化过程中通常会进行前件合并、泛化等操作 ...
前言 本系列为机器学习算法的总结和归纳,目的为了清晰阐述算法原理,同时附带上手代码实例,便于理解。 目录 k近邻(KNN) 决策树 线性回归 逻辑斯蒂回归 朴素贝叶斯 支持向量机(SVM ...
结点的路径对应了一个判定测试序列。 决策树学习的目的是为了产生一棵泛化能力强——即 ...