在上一篇文章的介绍中,我们已经通过相应的字符分割方法,将车牌区域进行分割,得到7个分割字符图块,接下来要做的就是将字符图块放入训练好的神经网络模型,通过模型来预测每个图块所表示的具体字符。神经网络的介绍和训练过程我们将在下一节中具体介绍,本节主要介绍字符特征的提取,和如何通过训练好的神经网络模型 ...
通过前面的学习,我们已经可以从图像中定位出车牌区域,并且通过SVM模型删除 虚假 车牌,下面我们需要对车牌检测步骤中获取到的车牌图像,进行光学字符识别 OCR ,在进行光学字符识别之前,需要对车牌图块进行灰度化,二值化,然后使用一系列算法获取到车牌的每个字符的分割图块。本节主要对该字符分割部分进行详细讨论。 EasyPR中,字符分割部分主要是在类 CCharsSegment 中进行的,字符分割函数 ...
2017-08-05 13:09 0 2965 推荐指数:
在上一篇文章的介绍中,我们已经通过相应的字符分割方法,将车牌区域进行分割,得到7个分割字符图块,接下来要做的就是将字符图块放入训练好的神经网络模型,通过模型来预测每个图块所表示的具体字符。神经网络的介绍和训练过程我们将在下一节中具体介绍,本节主要介绍字符特征的提取,和如何通过训练好的神经网络模型 ...
EasyPR(Easy to do Plate Recognition)是本人在opencv学习过程中接触的一个开源的中文车牌识别系统,项目Git地址为https://github.com/liuruoze/EasyPR。考虑到大部分人对opencv的使用还比较陌生,我将在 ...
上一篇主要介绍了车牌识别的整体框架和流程,车牌识别主要划分为了两个过程:即车牌检测和字符识别,而车牌识别的核心环节就是这一节主要介绍的车牌定位,即 Plate Locate。车牌定位主要是将图片中有可能是车牌的区域定位出来,方便后面进一步的处理。测试代码 ...
一、LBP特征 LBP指局部二值模式,英文全称:Local Binary Pattern,是一种用来描述图像局部特征的算子,LBP特征具有灰度不变性和旋转不变性等显著优点。 原始的LBP算子定义在 ...
一、简介 通过颜色定位和Sobel算子定位可以计算出一个个的矩形区域,这些区域都是潜在车牌区域,但是在进行SVM判别是否是车牌之前,还需要进行一定的处理。主要是考虑到以下几个问题: 1、定位区域存 ...
前面的文章中我们主要介绍了车牌定位的相关技术,但是定位出来的相关区域可能并非是真实的车牌区域,EasyPR通过SVM支持向量机,一种机器学习算法来判定截取的图块是否是真的“车牌”,本节主要对相关的技术做详细的介绍。 注:SVM相关内容可以详细参考周志华老师的《机器学习》和一篇名为《支持向量机通俗 ...
一、简介 对车牌颜色进行识别,可能大部分人首先想到的是RGB模型, 但是此处RGB模型有一定的局限性,譬如蓝色,其值是255,还需要另外两个分量都为0,不然很有可能你得到的值是白色。黄色更麻烦,它是 ...
大家好,好久不见了。 一转眼距离上一篇博客已经是4个月前的事了。要问博主这段时间去干了什么,我只能说:我去“外面看了看”。 图1 我想去看看 在外面跟几家创 ...