原文:KKT条件的物理意义(转)

最好的解释:https: www.quora.com What is an intuitive explanation of the KKT conditions 作者:卢健龙 链接:https: www.zhihu.com question answer 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 拉格朗日乘数法 Lagrange multiplier 有很 ...

2017-08-03 11:02 1 2672 推荐指数:

查看详情

KKT条件

KKT(Karush-Kuhn-Tucker)条件有时也称KT条件,最初发现此定理的是Kuhn,Tucker两人,后来发现Karush在1939年的一篇文章中已经有过这个定理表述,所以常以取三人名字命名为KKT条件。不带约束的非线性规划问题可以用梯度法、模式搜索法获得最优解,带约束的线性规划 ...

Thu Apr 08 05:20:00 CST 2021 0 848
KKT条件

在数学中,卡罗需-库恩-塔克条件(英文原名:Karush-Kuhn-Tucker Conditions常见别名:Kuhn-Tucker,KKT条件,Karush-Kuhn-Tucker最优化条件,Karush-Kuhn-Tucker条件,Kuhn-Tucker最优化条件,Kuhn-Tucker条件 ...

Sun Sep 13 23:54:00 CST 2020 0 561
关于拉格朗日乘子法与KKT条件

关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件 目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 ...

Wed Aug 12 02:57:00 CST 2015 0 3796
SVM之KKT条件理解

在SVM中,我们的超平面参数最终只与间隔边界上的向量(样本)有关,故称为支持向量机。 求解最优超平面,即求最大化间隔,或最小化间隔的倒数:||w||2/2,约束条件为yi(wTxi+b)>=1 因为此函数为凸函数(拉格朗日乘子法的前提条件),可用拉格朗日乘子法转化为对偶问题,当满足KKT ...

Wed Oct 02 19:10:00 CST 2019 0 654
KKT 条件 及其 理解

现在我们对于任意一个优化问题(不一定是凸优化问题): \begin{split}\text{min}\quad & f_{0}(x) \newline \text{subject to:}\q ...

Sat Sep 28 08:58:00 CST 2019 0 1600
拉格朗日乘子法和KKT条件

0 前言 上”最优化“课,老师讲到了无约束优化的拉格朗日乘子法和KKT条件。 这个在SVM的推导中有用到,所以查资料加深一下理解。 1 无约束优化 对于无约束优化问题中,如果一个函数f是凸函数,那么可以直接通过f(x)的梯度等于0来求得全局极小值点。 为了避免陷入局部最优,人们尽可 ...

Fri Nov 10 05:52:00 CST 2017 22 72731
拉格朗日乘子法以及KKT条件

拉格朗日乘子法是一种优化算法,主要用来解决约束优化问题。他的主要思想是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有n+k个变量的无约束优化问题。 其中,利用拉格朗日乘子法主要解决的问题为: 等式的约束条件和不等式的条件约束。 拉格朗日乘子的背后的数学意义 ...

Sat Apr 07 03:40:00 CST 2018 0 2177
关于拉格朗日乘子法和KKT条件

解密SVM系列(一):关于拉格朗日乘子法和KKT条件 标签: svm算法支持向量机 2015-08-17 18:53 1214人阅读 评论(0) 收藏 举报 分类: 模式识别&机器学习(42 ...

Wed Aug 03 01:33:00 CST 2016 0 7594
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM