转自:http://www.open-open.com/lib/view/open1426065900123.html 许多分布式计算系统都可以实时或接近实时地处理大数据流。本文将对三种Apache框架分别进行简单介绍,然后尝试快速、高度概述其异同 ...
处理实时的大数据流最常用的就是分布式计算系统,下面分别介绍Apache中处理大数据流的三大框架: Apache Storm 这是一个分布式实时大数据处理系统。Storm设计用于在容错和水平可扩展方法中处理大量数据。他是一个流数据框架,具有最高的社区率。虽然Storm是无状态的,它通过ApacheZooKeeper管理分布式环境和鸡群状态。使用起来非常简单,并且还支持并行地对实时数据执行各种操作。 ...
2017-08-02 11:48 0 3304 推荐指数:
转自:http://www.open-open.com/lib/view/open1426065900123.html 许多分布式计算系统都可以实时或接近实时地处理大数据流。本文将对三种Apache框架分别进行简单介绍,然后尝试快速、高度概述其异同 ...
storm、spark streaming、flink都是开源的分布式系统,具有低延迟、可扩展和容错性诸多优点,允许你在运行数据流代码时,将任务分配到一系列具有容错能力的计算机上并行运行,都提供了简单的API来简化底层实现的复杂程度。 Apache Storm 在Storm中,先要设计一个用于 ...
过程,以及各种专门术语,本文将介绍大数据系统一个最基本的组件:处理框架。处理框架负责对系统中的数据进行计算,例如处理 ...
分布式流处理是对无边界数据集进行连续不断的处理、聚合和分析。它跟MapReduce一样是一种通用计算,但我们期望延迟在毫秒或者秒级别。这类系统一般采用有向无环图(DAG)。 DAG是任务链的图形化表示,我们用它来描述流处理作业的拓扑。如下图,数据从sources流经处理任务链到sinks ...
根据最新的统计显示,仅在过去的两年中,当今世界上90%的数据都是在新产生的,每天创建2.5万亿字节的数据,并且随着新设备,传感器和技术的出现,数据增长速度可能会进一步加快。 从技术上讲,这意味着我们的大数据处理将变得更加复杂且更具挑战性。而且,许多用例(例如,移动应用广告,欺诈检测,出租车预订 ...
storm 使用kafka做数据源,还可以使用文件、redis、jdbc、hive、HDFS、hbase、netty做数据源。 新建一个maven 工程: pom.xml KafkaTopology ...
把批处理当作流处理中的一种特殊情况。在Flink中,所有 的数据都看作流,是一种很好的抽象,因为这更接近于现 ...