决策树比较常用的算法模型,可以做分类也可以回归 决策树算法重点 对特征的选择,可以使用熵,也可以使用基尼系数,通过信息增益或者信息增益率选择最好的特征 决策树的剪枝,有两种策略,一种是预剪枝,一种是后剪枝,预剪枝可以通过限制树的高度,叶子节点个数,信息增益等进行,使得树边建立边剪枝 ...
邻接列表及其类似结构 对于图结构的实现来说,最直观的方式之一就是使用邻接列表。下面我们来实现一个最简单的:假设现在我们有n个节点,编号分别为 ,...,n 。 然后,每个邻接列表就是一个数字列表,我们可以将他们编入一个大小为n的主列表,并用节点编号对其进行索引。 邻接集表示法: a, b, c, d, e, f, g, h range N b, c, d, e, f , a c, e , b d ...
2017-08-01 22:49 0 1243 推荐指数:
决策树比较常用的算法模型,可以做分类也可以回归 决策树算法重点 对特征的选择,可以使用熵,也可以使用基尼系数,通过信息增益或者信息增益率选择最好的特征 决策树的剪枝,有两种策略,一种是预剪枝,一种是后剪枝,预剪枝可以通过限制树的高度,叶子节点个数,信息增益等进行,使得树边建立边剪枝 ...
遇到了一道题,一开始以为是简单的最小生成树 做完发现一直WA,学习了一下发现是朱刘算法,整理一下笔记 P4716 最小树形图 地址:https://www.luogu.com.cn/problem/P4716 题目背景 这是一道模板题。 题目描述 给定包含 nnn 个结点, mmm 条 ...
1、前言 聚类分析是机器学习和数据分析中非常常见的分类方法, 当我们用到层次聚类(系统聚类)时,最常用的分析方法就是绘制树状图, 比较常见的统计软件像SPSS、SAS、R等都可以直接绘制树状图,比较简单, 2、Plotly python绘制树状图主要介绍使用Plotly工具 2.1 ...
一般来讲,实现图的过程中需要有两个自定义的类进行支撑:顶点(Vertex)类,和图(Graph)类。按照这一架构,Vertex类至少需要包含名称(或者某个代号、数据)和邻接顶点两个参数,前者作为顶点的标识,后者形成顶点和顶点相连的边,相应地必须有访问获取和设定参数的方法加以包装。Graph类至少 ...
近期研究了一下以图搜图这个炫酷的东西。百度和谷歌都有提供以图搜图的功能,有兴趣可以找一下。当然,不是很深入。深入的话,得运用到深度学习这货。Python深度学习当然不在话下。 这个功能最核心的东西就是怎么让电脑识别图片。 这个问题也是困扰了我,在偶然的机会,看到哈希感知算法。这个分两种,一种 ...
图是一种灵活的数据结构,它多用于描述对象之间的关系和连接模型。 关于图的算法:最小生成树、最短路径、旅行商问题以及许多其他算法大都会使用到广度优先搜索和深度优先搜索,因为它们提供了一套系统地访问图数据结构的方法。 带权图,是指图的每条边上带有一个值或权,这些权用一个小的数字标记在边上。很多条 ...
决策树---ID3算法 决策树: 以天气数据库的训练数据为例。 Outlook Temperature Humidity Windy PlayGolf? sunny ...
本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的废话,毕竟英文有的时候比较啰嗦。 一.决策树算法基本原理 背景:假设你的哥哥是一个投资房地产 ...