caffe添加python数据层(ImageData) 在caffe中添加自定义层时,必须要实现这四个函数,在C++中是(LayerSetUp,Reshape,Forward_cpu,Backward_cpu),在python 中是(setup,reshape ...
caffe中大多数层用C 写成。 但是对于自己数据的输入要写对应的输入层,比如你要去图像中的一部分,不能用LMDB,或者你的label 需要特殊的标记。 这时候就需要用python 写一个输入层。 如在fcn 的voc layers.py 中 有两个类: VOCSegDataLayer SBDDSegDataLayer 分别包含:setup,reshape,forward, backward, l ...
2017-07-27 22:51 0 3868 推荐指数:
caffe添加python数据层(ImageData) 在caffe中添加自定义层时,必须要实现这四个函数,在C++中是(LayerSetUp,Reshape,Forward_cpu,Backward_cpu),在python 中是(setup,reshape ...
在训练一个小的分类网络时,发现加上BatchNorm层之后的检索效果相对于之前,效果会有提升,因此将该网络结构记录在这里,供以后查阅使用: 添加该层之前: 添加该层之后: ...
一般说的BN操作是指caffe中的BatchNorm+Scale, 要注意其中的use_global_states:默认是true【在src/caffe/caffe.proto】 训练时:use_global_states:false 测试时:use_global_states:true ...
参考博客: http://blog.csdn.net/abc8730866/article/details/52522843 http://blog.csdn.net/lijiancheng061 ...
由于Python的灵活性,我们在caffe中添加自己定义的层时使用python层会更加方便,开发速速也会比C++更快,现在我就在这儿简单说一下如何在caffe中添加自定义的python层(使用的原网络结构时Lenet结构): 首先在caffe->python文件夹中添加自己定义的层函数 ...
最近实验当中借鉴了FPN网络,由于FPN网络对图片shape有要求,采用了两种方式,其一是在data_layer.cpp中,对原图进行padding操作;其二是需要对特征图进行类似crop操作,使得两者进行eltwise操作的时候shape是一致的。 简单说一下添加padding的操作 ...
1、Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层。 层类型:Convolution lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习 ...
关于caffe的python写的层多GPU训练 http://blog.csdn.net/chengqishang110/article/details/52355986 之前训练faster的时候一直没有办法进行多GPU训练,以为是自己的错,今天看了/include/caffe/layers ...