模型输出意想不到的结果。最近,在物理世界中成功实施的一系列对抗性攻击证明了此问题是所有基于深度学习系统 ...
近几年,机器学习异常火爆,可以用来解决各种各样的问题,但却很少有人意识到机器学习本身也容易受到攻击,终于Ian Goodfellow和Papernot首次将机器学习的攻击提出,并且做了很多非常重要的研究,这里给出这二位大牛的博客的翻译,有兴趣的朋友可以关注一下,觉得还是很有意思的研究。本文也是安全方面的学习,有兴趣的希望可以一起讨论学习 转载请注明出处 一 背景 直到几年前,机器学习算法在许多有 ...
2017-07-25 21:56 3 8175 推荐指数:
模型输出意想不到的结果。最近,在物理世界中成功实施的一系列对抗性攻击证明了此问题是所有基于深度学习系统 ...
对抗性鲁棒性与模型压缩:ICCV2019论文解析 Adversarial Robustness vs. Model Compression, or Both? 论文链接: http://openaccess.thecvf.com/content_ICCV_2019 ...
网络安全中机器学习大合集 from:https://github.com/jivoi/awesome-ml-for-cybersecurity/blob/master/README_ch.md#-datasets 历年来那些与网络安全中机器学习相关最好的工具与资源 目录 数据集 ...
©作者 | Doreen 01 联邦学习的背景知识 近年来,随着大量数据、更强的算力以及深度学习模型的出现,机器学习在各领域的应用中取得了较大的成功。 然而在实际操作中,为了使机器学习有更好的效果,人们不得不将大量原始数据送入模型中训练,这使得一些敏感数据被恶意的攻击者窃取 ...
机器学习--分类问题 分类问题是监督学习的一个核心问题,它从数据中学习一个分类决策函数或分类模 型(分类器(classifier)),对新的输入进行输出预测,输出变量取有限个离散值。 决策树 决策树 ...
最近碰到一个问题,其中的阳性数据比阴性数据少很多,这样的数据集在进行机器学习的时候会使得学习到的模型更偏向于预测结果为阴性。查找了相关的一些文献,了解了一些解决这个问题的一些方法和技术。 首先,数据集不平衡会造成怎样的问题呢。一般的学习器都有下面的两个假设:一个是使得学习器的准确率最高 ...
修正网络会不断震荡,无法形成一个收敛网络。因而DNN的训练中可以形成很多tricks。。 1、初始化 ...
在实际中,训练模型用的数据并不是均衡的,在一个多分类问题中,每一类的训练样本并不是一样的,反而是差距很大。比如一类10000,一类500,一类2000等。解决这个问题的做法主要有以下几种: 欠采样:就是把多余的样本去掉,保持这几类样本接近,在进行学习。(可能会导致过拟合) 过采样:就是增加比较 ...