1、J48原理 基于从上到下的策略,递归的分治策略,选择某个属性放置在根节点,为每个可能的属性值产生一个分支,将实例分成多个子集,每个子集对应一个根节点的分支,然后在每个分支上递归地重复这个过程。当所有实例有相同的分类时,停止。 问题:如何选择根节点属性,建立分支 ...
J 原理:本来名称为C . ,由于是Java实现的算法,再加上C . 为商业收费算法。 其实J 是自上而下的,递归的分治策略,选择某个属性放置在根节点,为每个可能的属性值产生一个分支,将实例分成多个子集,每个子集对应一个根节点的分支,然后在每个分支上递归地重复这个过程。当所有实例有相同的分类时,停止。 问题是如何:如恶化选择根节点属性,建立分支呢 例如:weather.nominal.arff 我 ...
2017-07-25 17:24 1 4020 推荐指数:
1、J48原理 基于从上到下的策略,递归的分治策略,选择某个属性放置在根节点,为每个可能的属性值产生一个分支,将实例分成多个子集,每个子集对应一个根节点的分支,然后在每个分支上递归地重复这个过程。当所有实例有相同的分类时,停止。 问题:如何选择根节点属性,建立分支 ...
算法思想 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。 其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。 使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出 ...
利用ID3算法来判断某天是否适合打网球。 (1)类别属性信息熵的计算由于未分区前,训练数据集中共有14个实例, 其中有9个实例属于yes类(适合打网球的),5个实例属于no类(不适合打网球), 因此分区前类别属性的熵为: (2)非类别属性信息熵 ...
###决策树基础概念 在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy (熵) 表示的是系统的凌乱程度,它是决策树的决策依据,熵的概念来源于香侬的信息论。 ###决策树的决策过程 选择分裂特征:根据某一指标(信息增益,信息增益比或基尼 ...
1. 决策树算法 1.1 背景知识 信息量\(I(X)\):指一个样本/事件所蕴含的信息,如果一个事情的概率越大,那么就认为该事件所蕴含的信息越少,确定事件不携带任何信息量 \(I(X)=-log(p(x))\) 信息熵\(H(X)\):用来描述系统信息量 ...
Infi-chu: http://www.cnblogs.com/Infi-chu/ 一、简介 决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-else结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法 1.定义: 决策树是一种树形结构,其中每个内部节点表示一个 ...
决策树算法是一种通用的机器学习算法,既可以执行分类也可以执行回归任务,同时也是一种可以拟合复杂数据集的功能强大的算法; 一、可视化决策树模型 通过以下代码,我们使用iris数据集构建一个决策树模型,我们使用数据的后两个维度并设置决策树的最大深度为2,最后通过export ...
1.Example 使用Spark MLlib中决策树分类器API,训练出一个决策树模型,使用Python开发。 2.决策树源码分析 决策树分类器API为DecisionTree.trainClassifier,进入源码分析。 源码文件所在路径为,spark-1.6/mllib/src ...