神经网络中的代价函数与后向传播算法 代价(损失)函数 依照惯例,我们仍然首先定义一些我们需要的变量: L:网络中的总层数,\(s_l\):在第l层所有单元(units)的数目(不包含偏置单元),k:输出单元(类)的数目 回想一下,在神经网络中,我们可能有很多输出节点 ...
为什么要使用backpropagation 梯度下降不用多说,如果不清楚的可以参考梯度下降算法。 神经网络的参数集合theta,包括超级多组weight和bais。 要使用梯度下降,就需要计算每一个参数的梯度,但是神经网络常常有数以万计,甚至百万的参数,所以需要使用backpropagation来高效地计算梯度。 backpropagation的推导 backpropagation背后的原理其实很 ...
2017-07-24 11:32 0 4691 推荐指数:
神经网络中的代价函数与后向传播算法 代价(损失)函数 依照惯例,我们仍然首先定义一些我们需要的变量: L:网络中的总层数,\(s_l\):在第l层所有单元(units)的数目(不包含偏置单元),k:输出单元(类)的数目 回想一下,在神经网络中,我们可能有很多输出节点 ...
[源码解析] PyTorch 如何实现后向传播 (4)---- 具体算法 目录 [源码解析] PyTorch 如何实现后向传播 (4)---- 具体算法 0x00 摘要 0x01 工作线程主体 1.1 线程主体代码 ...
处理逻辑怎么办? 那就是反向传播算法。 它对以前的模块产生积极影响,以提高准确性和效率。 让我们来深入 ...
[源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构 目录 [源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构 0x00 摘要 0x01 Engine 0x02 GraphRoot ...
[源码解析] Pytorch 如何实现后向传播 (3)---- 引擎动态逻辑 目录 [源码解析] Pytorch 如何实现后向传播 (3)---- 引擎动态逻辑 0x00 摘要 0x01 前文回顾 0x02 引擎总体架构 0x03 ...
[源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎 目录 [源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎 0x00 摘要 0x01 前文回顾 1.1 训练 ...
最近研究NLP颇感兴趣,但由于比较懒,所以只好找来网上别人的比较好的博客,备份一下,也方便自己以后方便查找(其实,一般是不会再回过头来看的,嘿嘿 -_-!!) 代码自己重新写了一遍,所以就不把原文代码贴过来了。 1. 前向算法(摘自http://www.cnblogs.com ...