tf.nn.dropout函数 定义在:tensorflow/python/ops/nn_ops.py. 请参阅指南:层(contrib)>用于构建神经网络层的高级操作,神经网络>激活函数 该函数用于计算dropout. 使用概率keep_prob,输出 ...
dropout dropout是指在深度学习网络的训练过程中,按照一定的概率将一部分神经网络单元暂时从网络中丢弃,相当于从原始的网络中找到一个更瘦的网络,这篇博客中讲的非常详细 tensorflow实现 用dropout: 输出结果: . . . . . . . . . . . . . . . . . . . . 不用dropout: 输出结果: . . . . . . . . . . . . ...
2017-07-22 17:05 0 4776 推荐指数:
tf.nn.dropout函数 定义在:tensorflow/python/ops/nn_ops.py. 请参阅指南:层(contrib)>用于构建神经网络层的高级操作,神经网络>激活函数 该函数用于计算dropout. 使用概率keep_prob,输出 ...
什么是dropout? 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较大,预测准确率较低。深度学习中在代码中经 ...
每一个output的值都有prob的概率被保留,如果保留=input/ prob,否则变为0 dropout相当于一个过滤层,tensorflow不仅丢弃部分input,同时将保留下的部分适量地增加以试图弥补梯度 ...
阅读了tensorflow的代码,dropout的实现如下 ...
1、softsign函数 图像 2、tensorflow softsign应用 输出结果: input:[ 0. -1. 2. -30. 30.]output:[ 0. -0.5 0.66666669 -0.96774191 0.96774191] ...
1、elu函数 图像: 2、tensorflow elu应用 输出结果: input:[ 0. -1. 2. -3.]output:[ 0. -0.63212055 2. -0.95021296] ...
有增加权重的惩罚机制,比如L2正规化,但在本处我们使用tensorflow提供的dropout方法,在训练 ...