摘要: 在Hadoop生态圈中,针对大数据进行批量计算时,通常需要一个或者多个MapReduce作业来完成,但这种批量计算方式是满足不了对实时性要求高的场景。那Storm是怎么做到的呢? 博主福利 给大家赠送一套hadoop视频课程 授课老师是百度 hadoop 核心架构师 ...
来自知乎: 伴随着信息科技日新月异的发展,信息呈现出爆发式的膨胀,人们获取信息的途径也更加多样 更加便捷,同时对于信息的时效性要求也越来越高。举个搜索场景中的例子,当一个卖家发布了一条宝贝信息时,他希望的当然是这个宝贝马上就可以被卖家搜索出来 点击 购买啦,相反,如果这个宝贝要等到第二天或者更久才可以被搜出来,估计这个大哥就要骂娘了。再举一个推荐的例子,如果用户昨天在淘宝上买了一双袜子,今天想买一 ...
2017-07-21 16:30 0 1413 推荐指数:
摘要: 在Hadoop生态圈中,针对大数据进行批量计算时,通常需要一个或者多个MapReduce作业来完成,但这种批量计算方式是满足不了对实时性要求高的场景。那Storm是怎么做到的呢? 博主福利 给大家赠送一套hadoop视频课程 授课老师是百度 hadoop 核心架构师 ...
导语 | 随着业务的发展,系统日益复杂,功能愈发强大,用户数量级不断增多,设备cpu、io、带宽、成本逐渐增加,当发展到某个量级时,这些因素会导致系统变得臃肿不堪,服务质量难以保障,系统稳定性变差,耗费相当的人力成本和服务器资源。这就要求我们:要有勇气和自信重构服务,提供更先进更优秀的系统 ...
大数据也是构建各类系统的时候一种全新的思维,以及架构理念,比如Storm,Hive,Spark,ZooKeeper,HBase,Elasticsearch,等等 storm,在做热数据这块,如果要做复杂的热数据的统计和分析,亿流量,高并发的场景下,最合适的技术就是storm,没有其他 举例说明 ...
所就职的公司是一家互联网视频公司,存在大量的实时计算需求,计算uv,pv等一些经典的实时指标统计。由于要统计当天的实时 UV,当天的uv由于要存储当天的所有的key,面临本地内存不够用的问题,异常重启后会丢失本地缓存,造成计算结果不准确的问题。;如果使用外部缓存比如redis,memcache ...
随着诸如Apache Flink,Apache Spark,Apache Storm之类的开源框架以及诸如Google Dataflow之类的云框架的增多,创建实时数据处理作业变得非常容易。这些API定义明确,并且诸如Map-Reduce之类的标准概念在所有框架中都遵循几乎相似的语义 ...
一、Storm编程模型 Topology:Storm中运行的一个实时应用程序的名称。(拓扑) Spout:在一个topology中获取源数据流的组件。 通常情况下spout会从外部数据源中读取数据,然后转换为topology内部的源数据 ...
实时计算平台中的弹性集群资源管理 本文系微博运维数据平台(DIP)在实时计算平台的研发过程中集群资源管理方面的一些经验总结和运用,主要关注以下几个问题: 异构资源如何整合? 实时计算应用之间的物理资源如何隔离? 集群资源利用率如何提高 ...
实时计算是什么?## 请看下面的图: 我们以热卖产品的统计为例,看下传统的计算手段: 将用户行为、log等信息清洗后保存在数据库中. 将订单信息保存在数据库中. 利用触发器或者协程等方式建立本地索引,或者远程的独立索引. join订单信息、订单明细、用户信息、商品信息 ...