1. 算法背景介绍 分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习说白了很简单,就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。分类本质上 ...
这个问题可能比较简单,但是也算是一点感悟吧。我们来看个例子 来自:http: blog.csdn.net acdreamers article details : 当前信息的熵计算如下: 再看下,按照outlook分类后的例子: 分类后信息熵计算如下: 代表在特征属性的条件下样本的条件熵。那么最终得到特征属性带来的信息增益为 信息增益的计算公式如下 好吧,抄别人的东西到此为止了: 这里要说的是为 ...
2017-07-20 20:41 1 1838 推荐指数:
1. 算法背景介绍 分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习说白了很简单,就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。分类本质上 ...
1.信息熵:信息熵就是指不确定性,熵越大,不确定性越大 2.关于信息增益: 信息增益是针对一个一个的特征而言的,就是看一个特征t,系统有它和没它的时候信息量各是多少,两者的差值就是这个特征给系统带来的信息量,即增益。系统含有特征t的时候信息量很好计算,就是刚才的式子,它表示的是包含 ...
四、划分选择 1、属性划分选择 构造决策树的关键是如何选择最优划分属性。一般而言,随着划分过程不断进行,我们希望决策树的分支结点所包含的样本尽可能属于同一类别,即结点的“纯度”越来越高。 常用属性划分的准则: (1)ID3:信息增益 (2)C4.5:增益率 ...
1.决策树思想:以信息增益作为指标,得出最高效的一种决策方案,可用于回归或者分类问题。【由if-else演化而来,后续可发展成机器学习中的随机森林算法】 2.决策树指标: 香农:消除随机不确定性的东西。 信息熵:定量表示(某种事物)随机不确定性的大小。 样本:假设一个人身上有四种 ...
参考自:Andrew Moore: http://www.cs.cmu.edu/~awm/tutorials 参考文档见:AndrewMoore_InformationGain.pdf 1、 信息熵:H(X) 描述X携带的信息量。 信息量越大(值变化越多),则越不确定,越不容易被预测 ...
故事从一条小学数学题说起 "爸爸,熊猫为什么是3个不是11个" "宝贝,你还没学二进制好吗....." 以上故事纯属虚构,真实的对话其实是这样的 "爸爸, 为什么3比4小" "宝贝,数一 ...
整理一下这几个量的计算公式,便于记忆 采用信息增益率可以解决ID3算法中存在的问题,因此将采用信息增益率作为判定划分属性好坏的方法称为C4.5。需要注意的是,增益率准则对属性取值较少的时候会有偏好,为了解决这个问题,C4.5并不是直接选择增益率最大的属性作为划分属性,而是之前 ...
样本所占的比例为pk (k=1,2,...,|y|),则D的信息熵定义为: 信息增益在决策树算 ...