目录 1 混淆矩阵衍生指标 1.1 ROC 1.2 AUC 1.3 K-S 1.4 GINI 1.5 小结 1 混淆矩阵衍生指标 上面提到的ACC、PPV、TPR、FPR等指标,都是对某一给定分类 ...
ROC的介绍可以参考wiki https: en.wikipedia.org wiki Receiver operating characteristic 偷一张wiki上的图片: AUC ROC的意思为ROC 曲线下方的面积 Area under the Curve of ROC ROC曲线:伪阳性率 FPR 定位为X轴,真阳性率 TPR 定义为Y轴。 TPR: 在所有实际为阳性的样本中,被正确 ...
2017-07-14 14:42 0 4768 推荐指数:
目录 1 混淆矩阵衍生指标 1.1 ROC 1.2 AUC 1.3 K-S 1.4 GINI 1.5 小结 1 混淆矩阵衍生指标 上面提到的ACC、PPV、TPR、FPR等指标,都是对某一给定分类 ...
本篇博文简要讨论机器学习二分类问题中的混淆矩阵、ROC以及AUC评估指标;作为评价模型的重要参考,三者在模型选择以及评估中起着指导性作用。 按照循序渐进的原则,依次讨论混淆矩阵、ROC和AUC: 设定一个机器学习问题情境:给定一些肿瘤患者样本,构建一个分类模型来预测肿瘤是良性还是恶性,显然这是 ...
文章转载自 http://alexkong.net/2013/06/introduction-to-auc-and-roc/ ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两 ...
二分类模型 AUC 评价法 对于二分类模型,其实既可以构建分类器,也可以构建回归(比如同一个二分类问题既可以用 SVC 又可以 SVR,python 的 sklearn 中 SVC 和 SVR 是分开的,R 的 e1701 中都在 svm 中,仅当 y 变量是 factor 类型时构建 SVC ...
目录 1 二分类模型评估 1.1 混淆矩阵 1.1.1 ACC 1.1.2 PPV 1.1.3 TPR 1.1.4 FPR 1.1.5 F-Score 1.1.6 小结 ...
Alink漫谈(八) : 二分类评估 AUC、K-S、PRC、Precision、Recall、LiftChart 如何实现 目录 Alink漫谈(八) : 二分类评估 AUC、K-S、PRC、Precision、Recall、LiftChart 如何实现 ...
,或者通过这个指标来调参优化选用的模型。 对于分类、回归、聚类等,分别有各自的 ...
ROC曲线 ROC曲线的全称是“接收者操作特征曲线”(receiver operating characteristic curve),它是一种坐标图式的分析工具,用于: 选择最佳的信号侦测模型、舍弃次佳的模型。 在同一模型中设置最佳阈值。 ROC曲线渊源 ROC曲线起源于 ...