原文:决策树分类算法及python代码实现案例

决策树分类算法 概述 决策树 decision tree 是一种被广泛使用的分类算法。 相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置 在实际应用中,对于探测式的知识发现,决策树更加适用。 算法思想 通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了 母亲: 。 女儿:长的帅不帅 母亲:挺帅的。 女儿:收 ...

2017-07-14 11:04 0 14047 推荐指数:

查看详情

决策树与随机森林分类算法Python实现

一、原理: 决策树:能够利用一些决策结点,使数据根据决策属性进行路径选择,达到分类的目的。 一般决策树常用于DFS配合剪枝,被用于处理一些单一算法问题,但也能进行分类 。 也就是通过每一个结点的决策进行分类,那么关于如何设置这些结点的决策方式: 熵:描述一个集合内元素混乱程度的因素。 熵 ...

Sun Feb 23 18:00:00 CST 2020 0 2488
python决策树分类算法

发现帮助新手入门机器学习的一篇好文,首先感谢博主!:用Python开始机器学习(2:决策树分类算法) J. Ross Quinlan在1975提出将信息熵的概念引入决策树的构建,这就是鼎鼎大名的ID3算法。后续的C4.5, C5.0, CART等都是该方法的改进。 熵就是“无序,混乱 ...

Thu Apr 23 18:06:00 CST 2015 0 5670
决策树分类算法

数据挖掘系列(6)决策树分类算法 从这篇开始,我将介绍分类问题,主要介绍决策树算法、朴素贝叶斯、支持向量机、BP神经网络、懒惰学习算法、随机森林与自适应增强算法分类模型选择和结果评价。总共7篇,欢迎关注和交流。   这篇先介绍分类问题的一些基本知识,然后主要讲述决策树算法的原理、实现,最后 ...

Wed Aug 21 01:15:00 CST 2013 0 3597
决策树分类算法

决策树算法是一种归纳分类算法,它通过对 训练集的学习,挖掘出有用的 规则,用于对 新集进行 预测。在其生成过程中,分割时属性选择度量指标是关键。通过属性选择度量,选择出最好的将样本分类的属性。 å³ç­æ åç±»ç®æ³æ¦è¿°" width ...

Wed Oct 23 17:12:00 CST 2019 0 1537
决策树算法-Python实现

决策树比较常用的算法模型,可以做分类也可以回归 决策树算法重点 对特征的选择,可以使用熵,也可以使用基尼系数,通过信息增益或者信息增益率选择最好的特征 决策树的剪枝,有两种策略,一种是预剪枝,一种是后剪枝,预剪枝可以通过限制的高度,叶子节点个数,信息增益等进行,使得边建立边剪枝 ...

Tue Jun 09 19:09:00 CST 2020 0 852
1. 决策树python源码实现--多叉分类

多叉分类 ​ 下面实现分类只限于特征是离散变量,而连续变量不能处理。另外,西瓜书介绍的缺失值的处理、多变量处理均未实现。下面实现有一个共同的特点,它的分支依据都是一个具体的特征取值,且每次特征选择之后都要删除特征。 一、python实现 ​ 我使用python的类实现多分叉决策树 ...

Sun Jul 21 05:18:00 CST 2019 1 1461
第四篇:决策树分类算法原理分析与代码实现

前言 本文详细介绍机器学习分类算法中的决策树算法,并全面详解如何构造,表示,保存决策树,以及如何使用决策树进行分类等等问题。 为了全面的理解学习决策树,本文篇幅较长,请耐心阅读。 算法原理 每次依据不同的特征信息对数据集进行划分,划分的最终 ...

Thu Jan 19 17:00:00 CST 2017 2 19164
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM