AUC(Area under curve)是机器学习常用的二分类评测手段,直接含义是ROC曲线下的面积。另一种解释是:随机抽出一对样本(一个正样本,一个负样本),然后用训练得到的分类器来对这两个样本进行预测,预测得到正样本的概率大于负样本概率的概率。 在有M个正样本,N个负样本的数据集里,利用公式 ...
.安装scikit learn . Scikit learn 依赖 Python gt . or gt . , NumPy gt . . , SciPy gt . . . 分别查看上述三个依赖的版本, python V 结果:Python . . python c import scipy print scipy.version.version scipy版本结果: . . python c i ...
2017-07-12 19:13 0 9342 推荐指数:
AUC(Area under curve)是机器学习常用的二分类评测手段,直接含义是ROC曲线下的面积。另一种解释是:随机抽出一对样本(一个正样本,一个负样本),然后用训练得到的分类器来对这两个样本进行预测,预测得到正样本的概率大于负样本概率的概率。 在有M个正样本,N个负样本的数据集里,利用公式 ...
1.自己写的计算auc的代码,用scikit-learn的auc计算函数sklearn.metrics.auc(x, y, reorder=False)做了一些测试,结果是一样的,如有错误,欢迎指正。 思路:1.首先对预测值进行排序,排序的方式用了python自带的函数sorted,详见注释 ...
参考链接:https://www.iteye.com/blog/lps-683-2387643 问题: AUC是什么 AUC能拿来干什么 AUC如何求解(深入理解AUC) AUC是什么 混淆矩阵(Confusion matrix) 混淆矩阵是理解大多数评价指标的基础 ...
AUC 指标 直观意义 AUC 指标用于评价分类器对于正、负样例的辨别能力,对出结果的排序位置(按照预测为正例的概率)敏感。 为什么提出这个指标? 一般来讲,精确率、召回率等指标,都需要设定一个阈值去判别是属于正类还是负类,例如预测分大于等于0.5判别为正类,小于0.5判别为负类 ...
ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里。这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC。 ROC曲线 ...
https://stackoverflow.com/questions/41032551/how-to-compute-receiving-operating-characteristic-roc-and-auc-in-keras https://github.com/keras-team ...
AUC是一种衡量机器学习模型分类性能的重要且非常常用的指标,其只能用于二分类的情况. AUC的本质含义反映的是对于任意一对正负例样本,模型将正样本预测为正例的可能性 大于 将负例预测为正例的可能性的 概率( :-) 没办法这句话就是这么绕, rap~). AUC作为数值,那么到底是 ...
终于找到计算AUC值的方法了。。。。SVM与随机森林分类后都适用。对于SVM分类器,MATLAB有自己的自带方法plotroc方法,但是对于随机森林得到的分类模型和预测不适用,以下这个代码对于哪个都适用(只负责计算AUC值,木有画出roc曲线功能) function [result ...