作者|ANIRUDDHA BHANDARI 编译|VK 来源|Analytics Vidhya 概述 理解R方和调整R方的概念 了解R方和调整R方之间的关键区别 介绍 当我开始我的数据科学之旅时,我探索的第一个算法是线性回归。 在理解了线性回归的概念和算法的工作原理之后 ...
python金融风控评分卡模型和数据分析微专业课 博主亲自录制视频 :http: dwz.date b vv .选择最简单模型 如果不能满足: 增加参数,增加R 判断是否overfittiing 调整R方,BIC,AIC 选择较小 或 值 R方不能比较参数不同模型,但调整后R方可以比较不同参数模型 如果添加一个新的变量,但调整R方变小,这个变量就是多余的 如果添加一个新的变量,但调整R方变大,这 ...
2017-07-11 10:24 0 4003 推荐指数:
作者|ANIRUDDHA BHANDARI 编译|VK 来源|Analytics Vidhya 概述 理解R方和调整R方的概念 了解R方和调整R方之间的关键区别 介绍 当我开始我的数据科学之旅时,我探索的第一个算法是线性回归。 在理解了线性回归的概念和算法的工作原理之后 ...
8.6 选择“最佳”的回归模型 8.6.1 模型比较 用基础安装中的anova()函数可以比较两个嵌套模型的拟合优度。所谓嵌套模型,即它的一 些项完全包含在另一个模型中 用anova()函数比较 > states<-as.data.frame(state.x77[,c ...
工作和生活中存在大量的具有相关性的事件,当找到不同变量之间的关系,我们就会用到回归分析。回归分析(Regression Analysis):是用来确定2个或2个以上变量间关系的一种统计分析方法。 在回归分析中,变量有2类:因变量 和 自变量。 因变量:通常是指实际问题中所关心的指标,用Y ...
原文链接:http://tecdat.cn/?p=5453 变量选择方法 所有可能的回归 model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars) ols_all_subset(model ...
原文链接:http://tecdat.cn/?p=21444 逻辑logistic回归是研究中常用的方法,可以进行影响因素筛选、概率预测、分类等,例如医学研究中高通里测序技术得到的数据给高维变量选择问题带来挑战,惩罚logisitc回归可以对高维数据进行变量选择和系数估计,且其有效的算法 ...
转自CSDN_杨志友 http://blog.csdn.net/yangzhiyouvl/article/details/53955073原文标题:7 Types of Regression Tec ...
缩小到(可能)零。因此,它使我们能够考虑一个更简明的模型。在这组练习中,我们将在R中实现LASSO回归。 ...
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型。在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论。这其中可能包括了因为更好 ...