前言 最近尝试看TensorFlow中Slim模块的代码,看的比较郁闷,所以试着写点小的代码,动手验证相关的操作,以增加直观性。 卷积函数 slim模块的conv2d函数,是二维卷积接口,顺着源代码可以看到最终调的TensorFlow接口是convolution,这个地方就进入C++层面 ...
CNN中的卷积核及TensorFlow中卷积的各种实现 声明: . 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论。 . 我不确定的地方用了 应该 二字 首先,通俗说一下,CNN的存在是为了解决两个主要问题: . 权值太多。这个随便一篇博文都能解释 . 语义理解。全连接网络结构处理每一个像素时,其相邻像素与距离很远的像素无差别对待,并没有考虑图 ...
2017-07-10 13:57 0 3419 推荐指数:
前言 最近尝试看TensorFlow中Slim模块的代码,看的比较郁闷,所以试着写点小的代码,动手验证相关的操作,以增加直观性。 卷积函数 slim模块的conv2d函数,是二维卷积接口,顺着源代码可以看到最终调的TensorFlow接口是convolution,这个地方就进入C++层面 ...
声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论。 2. 我不确定的地方用了“应该”二字 首先,通俗说一下,CNN的存在是为了解 ...
还是分布式设备上的实现效率都受到一致认可。 CNN网络中的卷积和池化层应该怎么设置呢?tf相应的函数 ...
以自带models中mnist的convolutional.py为例: 1.filter要与输入数据类型相同(float32或float64),四个参数为`[filter_height, filter_width, in_channels, out_channels]`,即卷积核的高/宽 ...
刚刚接触Tensorflow,由于是做图像处理,因此接触比较多的还是卷及神经网络,其中会涉及到在经过卷积层或者pooling层之后,图像Feature map的大小计算,之前一直以为是与caffe相同的,后来查阅了资料发现并不相同,将计算公式贴在这里,以便查阅: caffe中: TF中 ...
转自博文: https://www.jianshu.com/p/05c4f1621c7e 之前一直对tensorflow的padding一知半解,直到查阅了tensorflow/core/kernels/ops_util.cc中 ...
前面找到了tensorflow的一维卷积、池化函数,但是官方API太简单,网上的例子也不多。 由于没时间研究源码,只能另寻他法了。 后面细细想来,tensorflow的二维卷积、池化函数,好像也能进行一维卷积、池化;也就是,利用对图像矩阵进行卷积、池化的函数,把第一个维度设置成1。 这样做 ...
在tf1.0中,对卷积层重新进行了封装,比原来版本的卷积层有了很大的简化。 一、旧版本(1.0以下)的卷积函数:tf.nn.conv2d 该函数定义在tensorflow/python/ops/gen_nn_ops.py。 参数: input: 一个4维 ...