给定训练集{(x1,y1),(x2,y2).....(xm,ym)} ,对每个示例xi,Relief在xi的同类样本中寻找其最近邻xi,nh(猜中近邻),再从xi的异类样本中寻找其最近邻xi,nm(猜错近邻) 代码如下: ...
一 背景 问题 在机器学习的实际应用中,特征数量可能较多,其中可能存在不相关的特征,特征之间也可能存在相关性,容易导致如下的后果: . 特征个数越多,分析特征 训练模型所需的时间就越长,模型也会越复杂。 . 特征个数越多,容易引起 维度灾难 ,其推广能力会下降。 . 特征个数越多,容易导致机器学习中经常出现的特征稀疏的问题,导致模型效果下降。 . 对于模型来说,可能会导致不适定的情况,即是解出的参 ...
2017-07-07 00:31 3 4924 推荐指数:
给定训练集{(x1,y1),(x2,y2).....(xm,ym)} ,对每个示例xi,Relief在xi的同类样本中寻找其最近邻xi,nh(猜中近邻),再从xi的异类样本中寻找其最近邻xi,nm(猜错近邻) 代码如下: ...
特征选择的一般过程 从特征全集中产生出一个特征子集,然后用评价函数对该特征子集进行评价,评价的结果与停止准则进行比较,若满足停止准则就停止,否则就继续产生下一组特征子集,继续进行特征选择。 特征子集产生过程( Generation Procedure ) 采取一定的子集选取办法,为评价函数 ...
特征选择方法初识: 1、为什么要做特征选择在有限的样本数目下,用大量的特征来设计分类器计算开销太大而且分类性能差。2、特征选择的确切含义将高维空间的样本通过映射或者是变换的方式转换到低维空间,达到降维的目的,然后通过特征选取删选掉冗余和不相关的特征来进一步降维。3、特征选取的原则获取 ...
# -*- coding: utf-8 -*-"""Created on Sat Aug 18 16:23:17 2018@author: acadsoc"""import scipyimport n ...
文章是“阉割”版,主要是分类任务的特征选择,不完全适用于回归任务,具体内容和代码都是从上面摘出来的。 ...
曾经的我只知道,这台电脑缺一个好的显卡;现在的我还知道,原来这台电脑还缺一个好的CPU。 ——作者 遗传算法介绍 源码 一、算法 1.初始化种群 一个种群有好几条染色体 一条染色体大概长这样:[0,1,1,0,0,1,0,1,1,0,1] 1表示选择这个特征,0表示不选择 ...
特征选择的一般过程: 1.生成子集:搜索特征子集,为评价函数提供特征子集 2.评价函数:评价特征子集的好坏 3.停止准则:与评价函数相关,一般是阈值,评价函数达到一定标准后就可停止搜索 4.验证过程:在验证数据集上验证选出来的特征子集的有效性 1.生成子集 搜索算法有 完全搜索 ...
3.2 Embedded嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行。在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大到小选择特征。这些权值系数往往代表了特征对于模型的某种贡献或某种重要性,比如决策树和树 ...