原文:机器学习笔记:形象的解释神经网络激活函数的作用是什么?

此文转自知乎,哈工大NLPer忆臻 原出处:https: zhuanlan.zhihu.com p 查阅资料和学习,大家对神经网络中激活函数的作用主要集中下面这个观点: 激活函数是用来加入非线性因素的,解决线性模型所不能解决的问题。 下面我分别从这个方面通过例子给出自己的理解 lee philip 颜沁睿俩位的回答已经非常好了,我举的例子也是来源于他们,在这里加入了自己的思考,更加详细的说了一下 ...

2017-07-03 22:39 0 4521 推荐指数:

查看详情

神经网络学习笔记 - 激活函数作用、定义和微分证明

神经网络学习笔记 - 激活函数作用、定义和微分证明 看到知乎上对激活函数(Activation Function)的解释。 我一下子迷失了。 因此,匆匆写下我对激活函数的理解。 激活函数被用到了什么地方 目前为止,我见到使用激活函数的地方有两个。 逻辑回归(Logistic ...

Mon Jan 30 07:40:00 CST 2017 0 10936
神经网络中的激活函数作用和选择

如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。 正因为上面的原因,我们决定引入非线性函数作为激励函数 ...

Tue Jul 03 23:11:00 CST 2018 0 12083
神经网络与深度学习激活函数

激活函数: 传统神经网络中最常用的两个激活函数,Sigmoid系(Logistic-Sigmoid、Tanh-Sigmoid)被视为神经网络的核心所在.从数学上来看,非线性的Sigmoid函数对中央区的信号增益较大,对两侧区的信号增益小,在信号的特征空间映射上,有很好的效果,通过对加权的输入进行 ...

Mon Oct 31 06:04:00 CST 2016 0 9406
神经网络学习笔记2-多层感知机,激活函数

1多层感知机 定义:多层感知机是在单层神经网络上引入一个或多个隐藏层,即输入层,隐藏层,输出层 2多层感知机的激活函数: 如果没有激活函数,多层感知机会退化成单层 多层感知机的公式:  隐藏层 H=XWh+bh ...

Tue Jul 14 19:24:00 CST 2020 0 526
神经网络中的激活函数

作者|Renu Khandelwal 编译|VK 来源|Medium 什么是神经网络激活函数? 激活函数有助于决定我们是否需要激活神经元。如果我们需要发射一个神经元那么信号的强度是多少。 激活函数神经元通过神经网络处理和传递信息的机制 为什么在神经网络中需要一个激活函数 ...

Sat Jul 04 01:17:00 CST 2020 0 2076
神经网络中的激活函数具体是什么?为什么ReLu要好过于tanh和sigmoid function?(转)

为什么引入激活函数? 如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。 正因为上面的原因,我们决定 ...

Fri Aug 31 03:46:00 CST 2018 0 1144
神经网络中的激活函数具体是什么?为什么Relu要好过与tanh和sigmoid function

为什么要引入激活函数? 如果不用激活函数(其实相当于激励函数是f(x)=x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机了。 正因为上面的原因,我们决定引入非线性函数作为激励函数 ...

Sat Oct 13 22:53:00 CST 2018 0 1840
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM